
c©Springer-Verlag, 2011. This is the author’s version of the work. The original arti-
cle is published in the proceedings of the 2nd International Conference on Runtime
Verification (RV’11), and is available at www.springerlink.com.

Marathon: Detecting Atomic-Set Serializability
Violations with Conflict Graphs

William N. Sumner1, Christian Hammer1,2, and Julian Dolby3

1Purdue University, West Lafayette, IN, USA
wsumner@cs.purdue.edu

2Utah State University, Logan, UT, USA
hammer@usu.edu

3IBM T. J. Watson Research Center Hawthorne, NY, USA
dolby@us.ibm.com

Abstract. Recent research has proposed several analyses to mitigate
the fact that finding concurrency bugs in multi-threaded software is no-
toriously hard. This work proposes a new analysis based on a correctness
criterion called “atomic-set serializability”, which incorporates both race
conditions and traditional atomicity/serializability. We present a novel
analysis based on conflict cycle detection that is guaranteed to find all
violations in the intercepted execution trace. A set of heuristics automat-
ically determines all annotations required for atomic-set serializability.
We implemented the analysis and evaluated it on a suite consisting of
real programs and benchmarks. The evaluation demonstrates the use-
fulness of our heuristics by finding a number of known (as well as new)
violations with competitive overhead and a very low false positive rate.

Keywords: Serializability, Atomicity, Data Races, Concurrent Object-
Oriented Programming, Dynamic Analysis

1 Introduction

Multi-threaded programs have become more and more predominant as proces-
sor speeds cease to rise significantly, and manufacturers put multiple cores onto
one processor. However, writing correct multi-threaded code is notoriously hard,
which gave rise to several analyses that statically or dynamically enforce certain
correctness criteria. These criteria range from the weakest form, data races on
single memory locations, to atomicity for all memory involved in a given transac-
tion. Data races occur when two threads access the same shared variable without
synchronization, where one of the accesses is a write. Yet in general, data-race
freedom does not guarantee the absence of concurrency-related bugs [1, 2, 7].
A remedy has been found in various definitions of serializability (or atomic-
ity) [13,23,33,38,39]. According to these definitions, an execution performed by
a collection of threads is serializable if it is equivalent to a serial execution, in
which each thread’s transactions (or atomic sections) are executed in some se-
rial order. However, serializability/atomicity ignores invariants and consistency

http://www.springerlink.com

2 William N. Sumner, Christian Hammer, and Julian Dolby

properties that may exist between shared memory locations, and therefore may
not accurately reflect the intentions of the programmer for correct behavior,
resulting in missed errors and false positives.

A more flexible correctness criterion that takes such relationships into ac-
count has been explored recently: Atomic-set serializability defines atomic sets
of memory locations related by some correctness constraint. It further defines
units of work, operations that preserve these invariants. Since the sets can range
from a single location to the entire heap atomic-set serializability subsumes low
level data races as well as atomicity [36]. Like serializability, atomic-set serial-
izability disallows concurrency-related errors [1,2,7], but it also permits certain
non-problematic interleaving scenarios. Atomic-set serializability is based on a
declarative specification about data, which can be checked independent from
the actual synchronization code, permitting the code to be checked against the
programmer’s intention, in particular it can be checked independently of spe-
cific synchronization constructs such as locks. Therefore, it can be used in set-
tings where many existing approaches cannot, such as classes from the Java 5
java.util.concurrent library and lock-free algorithms.

To detect concurrency errors, the intent of the programmer must still be
known in terms of the atomic sets of related locations and their corresponding
units of work. Declaring them explicitly could impose a significant burden; hence,
we explore whether they can be inferred using heuristics based on the assumption
that object-oriented code associates units of consistency with objects. We present
a set of heuristics (Sect. 4.1) and show that they generate very few false positives
(between 2–4%) in terms of our best manual understanding of what the evaluated
programs are meant to do.

This work presents a new approach for checking atomic-set serializability
based on cycle detection in conflict graphs. The new approach is guaranteed not
to miss errors in a given execution with respect to the given atomic sets and
units of work, while providing all advantages of atomic-set serializability over
previous correctness criteria. Key steps of our technique include:

– Using a simple static escape analysis to detect fields of objects that may be
accessed by multiple threads,

– Encoding the dynamic call stack of each thread efficiently [35] based on a
static approximation of the call graph,

– Maintaining a conflict graph of units of work in order to detect cycles during
execution, which indicates a serializability violation.

Note that all static analyses are for optimization purposes only, our analysis
is independent of these preprocessing steps. We implemented the analysis using
the Shrike bytecode instrumentation component of the WALA program analysis
infrastructure. Our tool instruments the bytecodes of an application in order to:
(i) intercept accesses to shared data, (ii) maintain a dynamic call graph [35] to
determine the units of work to which these accesses belong, and (iii) update the
conflict graph accordingly. To encourage problematic interleavings, we optionally
instrumented the code with yields, a technique also known as noise making [3].
To determine the units of work we made the heuristic assumptions that method

Marathon: Detecting Atomic-Set Serializability Violations 3

boundaries delineate units of work, and that there is one atomic set for (each
instance of) each class, containing all the instance fields of that class.

We evaluated our tool on a number of benchmarks, including classes from the
Java Collections Framework, and applications from the ConTest suite [11]. We
found a significant number of violations, including known problems [11, 13], as
well as problems not previously reported. Our technique does not miss errors in
a given execution, provided our heuristics determine the atomic sets and units
of work appropriately. On average over all benchmarks, the instrumentation
inserted by our tool slows down program execution by a factor of 4, which is
similar to, or better than, the performance overhead incurred by other dynamic
serializability violation detection tools [13,14,19,23,30,38–40]

In summary, this paper makes the following contributions:

1. We present a dynamic analysis guaranteed to detect all atomic-set serial-
izability violations in the intercepted execution trace based on discovering
cycles in a conflict graph. This graph is based on atomic sets and units of
work, rather than low-level memory and locking operations in prior work.

2. We incorporated an efficient dynamic call graph encoding scheme that com-
putes the callstack as a small number of integers, and still encompasses all
the complexities of object-oriented systems such as exceptions. This uses
both less time and less space than traditional approaches.

3. We model the semantics of Object.wait in the context of atomic sets, which
leads to a drastic reduction of the false positive rate.

4. We present a set of heuristics that automatically determine the atomic sets
and units of work of an application. We demonstrate the usefulness of these
heuristics by using them to find many known races and simultaneously keep-
ing the set of false positives very low (2–4%).

5. We implemented this analysis using the WALA infrastructure and show its
effectiveness on a number of Java benchmarks. We found known bugs as well
as bugs not detected by our previous approach.

2 Background

Our work is based on atomic-set serializability, a correctness criterion for concur-
rent programs defined by Vaziri et al. [36] which exploits that invariants typically
exist between specific memory locations; a well-encapsulated data structure will
have operations that update only its own memory locations. Atomic-set serial-
izability assumes the existence of atomic sets of memory locations that must be
updated atomically, and units of work, code fragments that preserve consistency
of the atomic set, when executed sequentially. Intuitively, the atomic set denotes
the elements of a specific data structure, and units of work are the operations
for manipulating that data structure.

For cases where an operation needs to happen across multiple data structures,
the language offers two more keywords. A parameter declared unitfor signifies
that the method is a unit of work for that parameter, and hence this method

4 William N. Sumner, Christian Hammer, and Julian Dolby

(a) class Account {
int checking, savings;
public Account(int i, int j){

checking = i; savings = j;}
synchronized void transfer(int n){

checking += n; Global.inc();
savings -= n; Global.inc();}}

class Global {
static int opCounter = 0;
static synchronized void inc(){opCounter++;}}

class Test {
public static void main(String[] args){

final Account x = new Account(4,7);
Thread T1 = new Thread(){

public void run(){ x.transfer(2); }};
Thread T2 = new Thread(){

public void run(){ Global.inc(); }};
T1.start(); T2.start();}}

(b) T1:

transfer()1︷ ︸︸ ︷
. . inc()2inc()3 . .

T2: inc()4

(c) T1:

transfer()1︷ ︸︸ ︷
. . inc()2 . . inc()3

T2: inc()4

(d) T1:

transfer()1︷ ︸︸ ︷
. . inc()2 . . inc()3

T2: inc()4
- time

Fig. 1. (a) Example program. (b)–(d) Three different thread executions.

must appear atomic with respect to units of work upon that parameter. For
example, the ArrayList constructor from the JDK 1.5.0.18 takes another collection
c as parameter without synchronizing on it. Thus, another thread could add or
remove elements to c between retrieving the size of c and copying the elements
of c to the ArrayList, which results in an inconsistent value of the ArrayLists size.
Declaring c unitfor expresses the consistency requirement between the two calls.

The owned keyword conceptually declares that a given field is “part of” its
containing object by merging the respective atomic sets; this allows composition
of more-complex data structures from simpler ones. For example, in the Java
Collections, a HashSet is implemented with a backing HashMap stored in a field
called map that would be declared owned to express the invariant between the
state of the set itself and the backing map.

2.1 Example

Figure 1(a) shows a class Account that declares fields checking and savings, as well
as a method to transfer money from one to the other. Also shown is a class Global
declaring a field opCounter that counts the number of transactions that have taken
place. For the purposes of this example, we assume that the programmer intends
the following behavior: (1) Intermediate states in which the deposit to checking
has taken place without the accompanying withdrawal from savings cannot be
observed. (2) Concurrent executions of inc() are allowed provided that variable
opCounter is updated atomically. To this end, transfer() and inc() are protected by
separate locks. The class Test creates two threads that execute Account.transfer()
and Global.inc() concurrently.

Figure 1(b)-(d) depicts executions in which two threads, T1 and T2, con-
currently execute the transfer() and inc() methods, respectively. For convenience,
each method execution is labeled with a distinct number (1 through 4). Observe
that, in Figure 1(b), the execution of inc() by T2 occurs interleaved between that
of the two calls to inc() by T1.

Marathon: Detecting Atomic-Set Serializability Violations 5

2.2 Atomicity/Serializability

For brevity, we only describe these notions on a high level. For a more detailed
comparison and the details concerning the example in Figure 1 the reader is
referred to our previous work [19].

Atomicity. Atomicity is a non-interference property in which a method or
code block is classified as being atomic if its execution is not affected by and
does not interfere with that of other threads. In our example, the idea is to
show that checking and savings are updated atomically by demonstrating that
the transfer() method is an atomic section or a transaction. Lipton’s theory of
reduction [22] defines a pattern of operations that can be reduced to an equivalent
serial execution. However, method transfer() does not correspond to this pattern,
so the theory cannot show that no intermediate states are exposed to other
threads.

View-serializability. Two executions are view-equivalent [4,38] if they con-
tain the same events, each read operation reads the result of the same write
operation in both executions, and both executions have the same final write
for any location. An execution is view-serializable if it is view-equivalent to a
serial execution. It is easy to see that execution (b) is neither view-equivalent
to serial execution (c), nor to serial execution (d). Hence, execution (b) is not
view-serializable.

Conflict-serializability. Two events that are executed by different threads
are conflicting if they operate on the same location and one of them is a write.
Two executions are conflict-equivalent [4, 38] iff they contain the same events,
and each pair of conflicting events appears in the same order. An execution
is conflict-serializable iff it is conflict-equivalent to a serial execution. Conflict-
serializability implies view-serializability [4, 38] as they only differ on how they
treat blind writes. Hence, execution (b) is not conflict-serializable.

2.3 Atomic-Set Serializability

Given assumption (1) stated above, we assume that checking and savings form
an atomic set S1, and that transfer()1 is a unit of work on S1. Moreover, from
assumption (2) stated above, we infer that opCounter is another atomic set S2 and
Global.inc()2, Global.inc()3, and Global.inc()4 are units of work on S2. Atomic-set
serializability is equivalent to conflict serializability after projecting the original
execution onto each atomic set, i.e., only events from one atomic set are included
when determining conflicts. The projection of execution (b) onto atomic set S1 is
trivially serial, because events from only one thread are included. Furthermore,
the projection onto atomic set S2 is also serial because the events of units of
work Global.inc()2, Global.inc()3, and Global.inc()4 are not interleaved. Therefore,
execution (b) is atomic-set serializable.

In conclusion, by taking the relationships between shared memory locations
(atomic sets) into account, atomic-set serializability provides a more fine-grained
correctness criterion than the traditional notions of atomicity, conflict- and view-
serializability. In practice, those would classify execution (b) as having a bug,

6 William N. Sumner, Christian Hammer, and Julian Dolby

(a)
x=3; y=2; z=1
fork;

//Unit of Work u1 (T1):
x = 4; y = 3

//Unit of Work u2 (T2):
z = x

//Unit of Work u3 (T3):
print(z, y)

(b) Wu1(x), Ru2(x),Wu2(z), Ru3(z), Ru3(y),Wu1(y)

Fig. 2. (a) Example threads. (b) Non-serializable execution

u1

u2

u3

x

u1

u2

u3

x z

u1

u2

u3

x z

y

Fig. 3. Conflict graph development for Fig. 2(b) showing a serializability violation as
a cycle of conflicts on variables x, y and z between the units of work u1, u2, and u3.

but atomic-set serializability correctly reveals that there is none. Yet, if a coarser
granularity of data is desired, all three locations can be placed in a single atomic
set, in which case our method reverts to conflict-serializability.

2.4 Overview of Our Approach

The goal of this work is to check atomic-set serializability violations dynamically
during program execution. To that end our technique leverages a data structure
from database theory called a conflict graph. A conflict graph consists of nodes
representing the units of work (transactions), and edges modeling conflicts be-
tween those. Intuitively, a conflict between two nodes occurs when both units of
work access a memory location in an associated atomic set, where one access is
a write (see Sect. 3 for formal definitions.) The theory asserts that an execution
is serializable if and only if the conflict graph is acyclic.

As an example, consider Fig. 2(a), taken fromWang and Stoller [39, Sect. 6.3],
which displays a serializability violation involving 3 threads in part (b). Looking
at Fig. 3 reveals the nature of this serializability violation: The execution of
Fig. 2(b) induces a conflict graph involving three threads in units u1, u2 and u3
and the conflict edges are labeled with all three variables involved, so reasoning
about this bug is very natural.

3 Algorithm

This section presents the theory behind our new algorithm based on the defini-
tion of atomic-set serializability.

Let L be the set of all memory locations. A subset L ⊆ L is an atomic set,
indicating that there exists a consistency property between those locations. An
event is a read R(l) or a write W (l) to a memory location l ∈ L, for some atomic

Marathon: Detecting Atomic-Set Serializability Violations 7

set L. We assume that each access to a single memory location is uninterrupted.
Given an event e, the notation loc(e) denotes the location accessed by e.

A unit of work u is a sequence of events, and is declared on a set of atomic
sets. Let U be the set of all units of work. We write sets(u) for the set of atomic
sets corresponding to u. We say that

⋃
L∈sets(u) L is the dynamic atomic set

of u. Units of work may be nested, and we write u ← u′ to indicate that u′ is
nested in u. Units of work form a forest via the ← relation.

An access to a location l ∈ L appearing in unit of work u belongs to the
top-most (with respect to the ← forest) unit of work u′ within u such that
L ∈ sets(u′). The notation Ru(l) denotes a read belonging to u, and similarly
for writes. So if a method foo calls another method bar, where both are declared
units of work for the atomic set L1 and bar reads a location l ∈ L1 in bar, then
this read belongs to foo, as foo ← bar. Given an event e, the notation unit(e)
denotes the unit of work of e.

A thread is a sequence of units of work. The notation thread(u) denotes the
thread corresponding to u. An execution is a sequence of events from one or
more threads. Given an execution E and an atomic set L, the projection of E
on L is an execution that has all events on L in E in the same order, and only
those events.

Definition 1 (Atomic-set serializability [36]). An execution is called atom-
ic-set serializable if its projections on each atomic set are serializable.

Definition 2 (Conflict). Let L be an atomic set, l ∈ L, and u and u′ be two
units of work for L. Unit u conflicts with u′ (u u’) if and only if both u and
u′ access l, at least one of these accesses is a write, and the access in u either
reads from or performs the first write of l temporally preceding the access in u′.

A conflict graph is a directed graph where the vertices are the units of work,
U , and there exists an edge from u to u′ if and only if u u′. Figure 3 depict
the development of the conflict graph for the executions in Fig. 2(b), with the
code shown in part (a).

Lemma 1. An execution is atomic-set serializable iff its conflict graph is acyclic

Proof. Follows from our definition of conflict together with previous serializabil-
ity results [5, 12,15,28].

Corollary 1 ([Serializability Violation). An execution has an atomic-set se-
rializability violation iff there exists a cycle in the conflict graph of the execution.

According to this corollary, the cycles in the conflict graphs of Fig. 3 establish
an atomic-set serializability violation in the respective executions of Fig. 2(b).

4 Implementation

This section presents details of our implementation. We first present our choice
of defaults for atomic sets and units of work (Sect. 4.1). We then discuss how
we perform instrumentation to capture events (Sect. 4.2).

8 William N. Sumner, Christian Hammer, and Julian Dolby

4.1 Automatic Detection of Atomic Sets and Units of Work

We assume that all (including inherited) non-final, non-volatile instance fields
of an object are members of an atomic set. All accessible non-static public and
protected methods of that object are considered initial units of work declared on
this atomic set. All its non-final, non-volatile static fields form another per-class
atomic set with all non-private methods of the class as initial units of work.

In order to satisfy that each access to an atomic set is done within a cor-
responding unit of work [36, Sect. 4.1], we assume that a method containing a
direct access to a field (or using a simple getter/setter function) is an additional
unit of work for the atomic set the field belongs to. A unit of work declared on
multiple atomic sets must be a unit of work on their union. Therefore, we merge
the original atomic set and the set accessed directly during the execution of the
additional unit of work. We support two modi for merging atomic sets: When the
direct access is accessing a field of a member of the atomic set, we assume that
field is owned, so we merge the current atomic set with the one of that member
field and propagate that atomic set to the top-most unit of work (see Sect. 3).
For direct access to any other field, we do not propagate to the top-most unit,
as we assume unitfor semantics. Our previous work supported only the owned
semantics, which may result in more false positives [19].

Apart from that, we model inner classes. Inner classes indirectly leak access
to fields of an enclosing class. For example, in Java Collections, Iterators expose
access to an ArrayList’s internals to a caller of the iterator() method. Thus, we
make the caller a unitfor the the enclosing ArrayList as well, protecting access to
its internal fields.

These heuristics have been found very effective. They deal correctly with a
huge number of access patterns in Java programs.Therefore, we did not add any
manual annotations to the programs. We also implemented an intra-procedural
static analysis that determines whether a method call is a simple getter/setter.

Modeling wait/notify A call to a.wait() releases the lock associated with a
and waits for another thread to signal a certain condition (usually involving a’s
atomic set). The other thread changes shared state and calls notify(All). When
the first thread resumes, it re-evaluates the condition, which would lead to a
benign cycle in the conflict graph with a naïve heuristics of units of work. We
break a unit of work into two at a call to wait() due to its non-atomic semantics,
which is essential for a low false positive rate as shown by our experiments.

Discussion These heuristics are designed to discover atomic sets that cover
individual data structures; for many applications, such as building concurrent
libraries, this is precisely what is required; however, it is certainly possible to
have atomicity violations across data structures. Such races imply dependences
between memory locations across data structures that are not isolated behind
abstraction boundaries. This suggests a severe breakage of modularity, of which
atomicity violations are merely one of many deleterious consequences. Much

Marathon: Detecting Atomic-Set Serializability Violations 9

work, e.g. alias control such as ownership types [10], has focused on helping
programmers eliminate such errors.

4.2 Program Instrumentation

We instrument the program to intercept field access and to determine what
unit of work each access belongs to. To this end, we use the Shrike bytecode
instrumentor of the WALA program analysis infrastructure.1 For all benchmarks
other than those testing the collections, we did not instrument the Java library.
All inter-procedural static analyses are purely optimizations to reduce runtime
overhead, and we have fallback mechanisms if these analyses fail to complete.

Before instrumentation, our tool performs a simple static escape analysis that
determines a conservative set of possibly-escaping fields by computing the set
of all types that are transitively reachable from a static field or are passed to
a thread constructor. We instrument all non-final and non-volatile fields of such
types, as well as access to arrays.

Our tool uses a non-blocking queue similar to [17, Sect. 15.4.2] to store and
serialize events of different threads, keeping the probe effect [16] (i.e., changes
to the system behavior due to observation) as low as possible, and as, under
contention, blocking will show degraded performance due to context-switching
overhead and scheduling delays. Serializing events in a sequential order is a
prerequisite for detecting cycles in the conflict graph. As a field access and its
recording do not happen atomically, the scheduler could activate another thread
in-between. Nevertheless, the obtained execution is always a valid execution of
the program, as the recording takes place in the same thread, and any syn-
chronization that applies to the access also applies to the recording. Thus, the
intercepted execution must be consistent with the program’s synchronization
scheme, i.e., it might happen with a possible scheduling.

To determine in which unit of work each access belongs, we keep track of a
dynamic call graph, essentially a call stack, for each called method. An access to
a location in an atomic set belongs to its top-most unit of work. To maintain the
dynamic call graph, we exploit a technique from Sumner et al. that uses simple
arithmetic operations at the invocation points in the program [35]. A call stack
corresponds to a path in the static call graph. Using static analysis, we number
paths in the call graph and then compute the number of the current path at
runtime through addition and subtraction. To handle callbacks and recursion, we
represent the dynamic call graph as a list of numbers, saving the last computed
id to the list before such a callback and restoring it from the list afterward. We
further extend the technique to handle exceptions in Java by saving the id before
a try and restoring it within a catch or finally.

As an option, our instrumentation adds yields at certain points in the program
to achieve more interleavings, a technique is called noise making. Ben-Asher et
al. found that, with a more elaborate noise strategy, the probability of producing
a bug increases considerably [3].

1 http://wala.sf.net

10 William N. Sumner, Christian Hammer, and Julian Dolby

To reduce the memory overhead of our technique, we additionally garbage
collect old units of work that can no longer lead to cycles in the conflict graph.
When a unit of work completes and has no incoming conflict edges, it cannot
participate in a conflict and may be safely collected. This further allows any
terminated units of work conflicting only with the collected one to also be col-
lected.

5 Evaluation

We evaluated our new analysis on the same set of benchmarks as the previous
analysis [19] and additional real world programs, including ConTest [11], Java
Collections, the Jigsaw webserver, and the Jspider and Weblech web crawlers
from [29]. We ran all benchmarks on a 64-bit 2.8GHz 4-core Intel machine with
6GB memory and used the Sun Hotspot JVM version 1.6.0_24-b07.

Table 1 shows the results of our analysis, where each benchmark was exe-
cuted twice. The column “Program” lists the name of each benchmark. We first
list benchmarks from the ConTest suite and then other benchmarks. The “LOC”
column contains the number of static lines of code. While the ConTest bench-
marks are small kernel programs, others range from a few thousand to more
than 100K LOC, showing the applicability of the technique to real world pro-
grams. The “#Threads” column lists the configured number of threads in the
benchmark. For the ConTest and Collections benchmarks, these are the same as
in previous work.

We evaluated the reported violations along several dimensions: The unique
cycles are counted in the “Cycle Sizes” column according to the number of units
of work that the cycle comprises. When multiple accesses (on possibly different
fields of an atomic set) can induce the same cycle in the conflict graph, they
are considered parts of the same violation and only counted once. However, we
listed cycles involving the same atomic set with different sizes separately.

The column “FP” displays the ratio of benign violations (false positives) and
the total violations reported based on manual inspection of the programmer’s
intentions. With our model of Object.wait, only few violations did not in fact
indicate a bug. For example, the programs BufWriter, Lottery and Manager had
cases where our heuristics for units of work were too coarse grained. Exploring
further options for splitting up units of work at certain places like thread fork or
join points is subject to future work. Overall, our false positive rate is just under
2%. The Collections benchmarks are admittedly pathological in the number of
violations they observe, but even excluding them, our false positive rate is 4%.
It was interesting to see the number of violations found for Piper reduce from 75
to 0 when we introduced splitting of the unit of work at Object.wait callsites (see
Sect. 4.1). Also BoundedBuffer, JSpider and Weblech would have had several
false positives without splitting. These numbers show that faithfully modeling
the semantics of wait reduces the false positive rate considerably.

The “New Vio” column compares the current technique with our previous
approach [19]. It lists the number of new serializability violations detected. Pro-

Marathon: Detecting Atomic-Set Serializability Violations 11

Table 1. For each benchmark, the table indicates the number of different violations
detected by cycle length, false positives, new violations, slowdown factor, max. size of
the conflict graph, and the avg. call stack size

Program LOC Cycle Sizes FP New SF SF |CG| Stack #Threads
2 3 4 5 6 7 8 9+ Vio Mem Disk Depth

Account 155 1 0 0 0 0 0 0 0 0/1 0 1.0 1.0 14 2.0 10
AirlineTickets 95 1 1 0 0 0 0 0 0 0/2 0 1.5 1.5 94 2.0 100
AllocationV 286 0 0 0 0 0 0 0 0 0/0 0 1.0 1.0 4 2.0 2
BoundedBuffer 328 0 0 1 0 0 0 0 0 0/1 – 1.0 1.0 10 2.0 3
BubbleSort 362 2 3 1 0 0 0 0 0 0/6 0 1.0 1.0 17 2.0 8
BubbleSort 2 130 1 1 1 1 1 1 1 27 0/34 34 10.4 1.4 201 2.0 200
BufWriter 255 1 2 0 0 0 0 0 0 2/3 2 – – 8 2.0 6
Critical 68 1 0 0 0 0 0 0 0 0/1 0 1.0 1.0 2 2.0 2
DCL 183 1 1 1 0 0 0 0 0 0/1 0 1.3 1.3 31 2.0 20
FileWriter 325 0 0 0 0 0 0 0 0 0/0 0 1.0 1.0 6 2.0 N/A
LinkedList 416 1 0 0 0 0 0 0 0 0/1 0 1.0 1.0 9 2.0 2
Lottery 359 2 1 1 1 1 0 0 0 1/6 5 1.5 1.5 98 2.0 33
Manager 188 4 0 0 0 0 0 0 0 2/4 2 1.0 1.0 7 2.0 3
MergeSort 375 1 0 0 0 0 0 0 0 1/1 0 1.1 1.1 12 3.4 4
MergeSortBug 257 2 1 2 1 1 0 0 0 0/7 1 8.7 1.1 27 3.6 4
PingPong 272 1 0 0 0 0 0 0 0 0/1 0 1.0 1.0 124 2.0 120
Piper 116 0 0 0 0 0 0 0 0 0/0 – – – 83 2.0 40
ProducerConsumer 223 3 3 0 0 0 0 0 0 0/6 – 1.0 1.0 12 2.0 6
Shop 273 2 1 1 1 1 1 1 17 0/25 1 1.0 1.0 122 2.0 7
SunsAccount 144 2 1 1 1 1 1 1 31 0/39 1 1.0 1.0 7613 2.0 N/A
Jigsaw 142K 1 0 0 0 0 0 0 0 0/1 0 3.9 3.9 94 8.0 3
Jspider 56K 4 0 0 0 0 0 0 0 0/4 – 1.2 1.2 128 3.4 6
Weblech 1874 2 0 0 0 0 0 0 0 0/2 – 1.1 1.0 12 2.0 9
ArrayBlockingQ 1576 1 1 0 0 0 0 0 0 0/7 2 26.6 14.12 725 4.1 10
ArrayList (sync) 2266 24 37 10 5 3 0 0 0 0/60 60 48.9 19.6 429 4.1 10
LinkedBlockingQ 1620 1 0 0 0 0 0 0 0 0/1 1 20.1 16.9 605 4.0 10
DelayQueue 1961 25 13 3 1 1 0 0 0 0/43 20 23 17.5 155 4.2 10
Vector 2636 18 38 36 24 11 4 0 0 0/131 131 52.8 10.4 63 4.0 10

grams not previously evaluated are denoted by –. We interpret the substantial
number of new violations as an indication of the benefit over the old technique,
stemming from the fact that the new technique does not miss violations in the in-
tercepted execution. We note that the newly found violations also mean that our
technique has no false negatives with respect to the known bugs in the ConTest
and Collections benchmarks except for in AllocationV, FileWriter, and Merge-
Sort. In these benchmarks, poor object orientation as discussed in Sect. 4 and
an inability to reproduce a failing run prevented us from detecting violations.

The “SF” columns indicate the slowdown factor of the instrumented version
compared to the uninstrumented version of the program. “SF Mem” is the slow-
down when the conflict graph is maintained online during program execution,
and “SF Disk” is the slowdown when all accesses are logged to disk and cycle de-
tection is performed postmortem. Note that Piper exhibits a bug that prevented
it from terminating and being timed, and BufWriter terminates its threads pre-
dictably after 10 seconds. We excluded these from the average, denoted by –.
For Jigsaw, we measured the slowdown in response time for client requests, as
a web server runs in an infinite loop. Our technique is comparable or better
than previous approaches, which range from 10x-200x [13, 14, 19, 23, 30, 38–40],
having a 8.5x average overhead factor when performed online. This, however, is
biased by the pathological Collection benchmarks. When only the programs with

12 William N. Sumner, Christian Hammer, and Julian Dolby

more realistic behavior are considered, the overhead diminishes to 1.9x. When
cycle detection is performed postmortem, these numbers diminish to 4x and
1.1x respectively. Some benchmarks, in particular our synthetic test harness for
the Collections exhibit pathological behavior such that every field access must
be checked for potential conflicts, resulting in atypical overhead. We include the
Collections data to show that out technique works even on degenerate programs.
In particular, most techniques checking atomicity or serializability violations de-
pend on a particular locking discipline and are thus not suitable for the highly
concurrent data structures of the package java.util.concurrent.

Taken from our cycle detection algorithm [18], our technique has a theoretical
time complexity of O(n3/2) where n is the number of accesses to shared variables.
In reality, our technique is efficient and practical because real world programs do
not have such degenerate behavior. In practice, conflict graphs do not grow very
large, as seen in Table 1. This is the result of the pruning from Sect. 4.2, and it
reduces the practical cost of cycle detection. That is, the practical running time
of the algorithm is no longer proportional to an execution’s length. In addition,
the number of variables that escape across multiple threads is limited, ensuring
that much of an execution can usually be ignored by the analysis.

The column “ |CG|” shows the maximum size of the conflict graph before each
garbage collection, given as the number of units of work in the graph. “Stack
depth” shows the number of integers required for our compact stack encoding.
There is no consistent correspondence between these statistics and the apparent
slowdown factor, which supports our argument on the algorithm’s complexity.

6 Related Work

A data race occurs when there are two concurrent accesses to a shared memory
location not ordered by synchronization, at least one of which is a write. Dynamic
analyses for detecting data races include those based on the lockset algorithm
[32,34], on the happens-before relation [25], or on a combination of the two [27].
Dynamic approaches to detecting races scale reasonably well for real applications
and have detected a large number of bugs in real software [27,32,33].

Narayanasamy et al. [26] present a dynamic race detection tool and an auto-
mated technique for classifying the races found by the tool as benign or malign.
This classification is based on replaying the execution of a piece of code that
exhibits a race according to two different executions, and observing whether or
not the resulting executions produce different results.

A program without data races may not be free of concurrency bugs as shown
in [2, 7]. Atomic-set serializability captures these forms of high-level data races
as a correctness criterion based on the programmer’s intentions for correct be-
havior directly. Unlike these techniques, our approach is independent of any
synchronization mechanism.

Atomizer [13] , is a dynamic atomicity checker based on Lipton’s theory of
reduction. Wang and Stoller present a number of different algorithms for de-
tecting atomicity violations [38,39]. The Block-Based Algorithm [39] is based on

Marathon: Detecting Atomic-Set Serializability Violations 13

non-serializable interleaving patterns. In addition, they view the heap as a single
atomic set, whereas our approach is parameterized by a partitioning of the heap
into multiple atomic sets. Wang and Stoller also [38] present two Commit-Node
Algorithms for checking view serializability and conflict serializability (detailed
comparison presented in [19]).

Lu et al. [23] detect atomicity violations in C programs. They observe many
correct “training” executions of a concurrent application and record nonserial-
izable interleavings of accesses to shared variables. Then, nonserializable inter-
leavings that only arise in incorrect executions are reported as atomicity viola-
tions. They only detect atomicity violations that involve a single shared variable,
whereas our approach can handle multiple locations.

Another serializability violation detector was presented by Xu et al. [40]. It
dynamically detects atomic regions (called Computation Units or CUs) using a
region hypothesis, which proved useful in their experiments but is not sound in
general. Thus, their analysis produces both false positives and negatives. Non-
serializability checking is done using a heuristic based on strict two-phase locking.
Like us, it does not rely on the possibly buggy locking structure of the program.

Recently, Park et al. correlated access patterns with the observed likelihood
or suspicion that they cause a program to behave incorrectly [30]. They ignore
such problems as stale writes and inconsistent reads, and they do not handle
unserializable behaviors between more than two threads.

Other recent work uses cycle detection to find atomicity violations: Farzan
et al. use postmortem cycle detection to find atomicity violations requiring
user specified transactions [12]. Velodrome dynamically detects atomicity vio-
lations [14]. It uses a similar mechanism for safely garbage collecting terminated
transactions. Atomicity does not take the consistency properties between data
into account and thus may ignore the programmer’s intentions as exemplified in
Sect. 2.2. While Velodrome’s analysis should be both sound and complete, their
implementation is neither. This is due to slightly unsound optimizations, and
because Velodrome makes the heuristic assumption that all methods are atomic,
which is not generally the case, like for Thread’s run() methods. We argue that
our heuristics based on OO principles and the declarative approach to synchro-
nization models the programmer’s intentions better. As for false positives, they
report none; however, that is with respect to their very strong assumptions. In
contrast, our reports of false positives are with respect to the programmer’s in-
tentions as measured by potential to produce wrong answers. Finally, Velodrome
does not instrument array access for reasons of complexity, which would have
resulted in more than 22% missed violations in our ConTest benchmarks.

Related work also explores alternative thread schedules that might cause
atomicity violations to occur [6, 8, 9, 14, 20, 21, 31]. We leave this orthogonal
problem as future work. The work of Burnim et al. [6] also extends to such
difficult data structures as those in java.util.concurrent.

Martin et al. [24] propose dynamic ownership policy checking for shared
objects in C/C++. Their approach requires manual ownership annotations and
imposes an average runtime overhead of 26%. Working on a very fine granularity

14 William N. Sumner, Christian Hammer, and Julian Dolby

level, their annotations could in theory be used to check atomic-set serializability,
however, by annotating code instead of data their approach is not data-centric.

A previous approach of Hammer et al. [19] matches an intercepted execution
trace against a set of problematic interleaving patterns. Unlike conflict graphs,
that approach cannot find all possible atomic-set serializability violations in an
intercepted execution trace. Apart from that, that work used a different heuris-
tics to determine units of work and atomic sets. In particular it only supported
the owned annotation, did not infer direct field access in accessor methods, needed
to retain the exact index of array access for maximal precision and could not
optimize away events accessing the same atomic set and unit of work.

7 Conclusions

This work presents a new mechanism to dynamically detect atomic-set serial-
izability violations. It is both more powerful than previous atomic-set serializa-
bility violation detectors, for identifying all violations present in the intercepted
execution, as well as detectors of other correctness criteria like race freedom,
serializability, and atomicity, as these are subsumed by the notion of atomic-set
serializability. We have shown that our new algorithm scales to realistic program
sizes. We also proposed a set of heuristics to determine atomic sets and units
of work and demonstrate their effectiveness in the evaluation where they suc-
cessfully find many known concurrency bugs with a very low false positive rate.
Even though our analysis already finds a high number of violations due to noise
making, we envisage prediction of atomic-set serializability violations in alter-
native schedules of the program as a possible extension, to mitigate coverage of
the huge test space of concurrent programs.

Acknowledgement. We are grateful to Frank Tip, Mandana Vaziri, and Pavel
Avgustinov for discussions on this approach. This work was supported in part
by NSF grant CCF 1048398.

References

1. Artho, C., Havelund, K., Biere, A.: High-level data races. Journal on Software Testing, Verifi-
cation and Reliability (STVR) 13(4), 207–227 (2003)

2. Artho, C., Havelund, K., Biere, A.: Using Block-local Atomicity to Detect Stale-value Concur-
rency Errors. In: ATVA 2004.

3. Ben-Asher, Y., Eytani, Y., Farchi, E., Ur, S.: Noise makers need to know where to be silent -
producing schedules that find bugs. In: ISOLA 2006.

4. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database
Systems. Addison-Wesley (1987)

5. Bernstein, P.A., Goodman, N.: Concurrency Control in Distributed Database Systems. ACM
Comput. Surv. 13(2), 185–221 (1981)

6. Burnim, J., Necula, G., Sen, K.: Specifying and checking semantic atomicity for multithreaded
programs. In: ASPLOS 2011.

7. Burrows, M., Leino, K.R.M.: Finding stale-value errors in concurrent programs. Concurrency
and Computation: Practice and Experience 16(12), 1161–1172 (2004)

8. Chen, Q., Wang, L.: An Integrated Framework for Checking Concurrency-Related Programming
Errors. In: COMPSAC 2009.

9. Chen, Q., Wang, L., Yang, Z., Stoller, S.: HAVE: Detecting Atomicity Violations via Integrated
Dynamic and Static Analysis. In: FASE 2009.

Marathon: Detecting Atomic-Set Serializability Violations 15

10. Clarke, D.G., Noble, J., Potter, J.M.: Simple Ownership Types for Object Containment, In:
ECOOP 2001. LNCS, vol. 2072, pp. 53–76.

11. Eytani, Y., Ur, S.: Compiling a benchmark of documented multi-threaded bugs. In: IPDPS
2004.

12. Farzan, A., Madhusudan, P.: Monitoring Atomicity in Concurrent Programs. In: CAV 2008.
13. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multithreaded programs.

In: POPL 2004
14. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic atomicity checker

for multithreaded programs. In: PLDI 2008
15. Fle, M.P., Roucairol, G.: On serializability of iterated transactions. In: PODC 1982
16. Gait, J.: A probe effect in concurrent programs. Software: Practice and Experience 16(3), 225–

233 (1986)
17. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concurrency in Practice.

Addison Wesley Professional (May 2006)
18. Hauepler, B., Kavitha, T., Mathew, R., Sen, S., Tarjan, R.: Faster algorithms for incremental

topological ordering. In: ICALP 2008
19. Hammer, C., Dolby, J., Vaziri, M., Tip, F.: Dynamic detection of atomic-set-serializability

violations. In: ICSE 2008
20. Kahlon, V., Wang, C.: Universal Causality Graphs: A Precise Happens-Before Model for De-

tecting Bugs in Concurrent Programs. In: CAV 2010
21. Lai, Z., Cheung, S.C., Chan, W.K.: Detecting atomic-set serializability violations in multi-

threaded programs through active randomized testing. In: ICSE 2010
22. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Commun. ACM

18(12), 717–721 (1975)
23. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: Detecting Atomicity Violations via Access Inter-

leaving Invariants. In: ASPLOS 2006
24. Martin, J.P., Hicks, M., Costa, M., Akritidis, P., Castro, M.: Dynamically checking ownership

policies in concurrent C/C++ programs. In: POPL 2010
25. Min, S.L., Choi, J.D.: An efficient cache-based access anomaly detection scheme. In: ASPLOS

’1991
26. Narayanasamy, S., Wang, Z., Tigani, J., Edwards, A., Calder, B.: Automatically classifying

benign and harmful data races using replay analysis. In: PLDI 2007
27. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. In: PPoPP 2003
28. Papadimitriou, C.: The theory of database concurrency control. Computer Science Press, Inc.,

New York, NY, USA (1986)
29. Park, C., Sen, K.: Randomized active atomicity violation detection in concurrent programs. In:

FSE 2008
30. Park, S., Vuduc, R.W., Harrold, M.J.: Falcon: fault localization in concurrent programs. In:

ICSE 2010
31. Park, S., Lu, S., Zhou, Y.: CTrigger: exposing atomicity violation bugs from their hiding places.

In: ASPLOS 2009
32. von Praun, C., Gross, T.R.: Object race detection. In: OOPSLA 2001
33. von Praun, C., Gross, T.R.: Atomicity Violations in Object-Oriented Programs. Journal of

Object Technology 3(6), 103–122 (June 2004)
34. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic data race

detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411 (1997)
35. Sumner, W.N., Zheng, Y., Weeratunge, D., Zhang, X.: Precise calling context encoding. In:

ICSE 2010
36. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in an object-

oriented language. In: POPL 2006
37. Vaziri, M., Tip, F., Dolby, J., Hammer, C., Vitek, J.: A Type System for Data-Centric Syn-

chronization. In: ECOOP 2010
38. Wang, L., Stoller, S.D.: Accurate and Efficient Runtime Detection of Atomicity Errors in Con-

current Programs. In: PPoPP 2006
39. Wang, L., Stoller, S.D.: Runtime Analysis of Atomicity for Multithreaded Programs. IEEE

Transactions on Software Engineering 32(2), 93–110 (2006)
40. Xu, M., Bodík, R., Hill, M.D.: A serializability violation detector for shared-memory server

programs. In: PLDI 2005

	Marathon: Detecting Atomic-Set Serializability Violations with Conflict Graphs

