
A Static Memory Safety Annotation System for Safety Critical Java

Daniel Tang, Ales Plsek, Kelvin Nilsen†, Jan Vitek
S3 lab, Purdue University † Atego Inc.

Abstract—Embedded systems must be able to operate for
long periods of time with limited memory. Dynamic memory
allocation is often discouraged in such systems as it requires
careful analysis to rule out memory-related software defects.
This paper presents an annotation system that can be used
to rule out memory access errors in programs written in
a subset of the Java programming language which targets
safety critical applications. The annotations are optional. When
present, they are used by the compiler to report, ahead of
time, potential memory access errors. The proposed system is
part of the upcoming Safety Critical Java Specification. It has
been evaluated on a number of small benchmark programs (26
KLOC of Java code) and implemented in the oSCJ real-time
Java virtual machine leading to performance improvements
ranging from 1.7% to 26%.

I. INTRODUCTION

Memory is a key resource in embedded systems. Pro-
grammers must carefully apportion storage space to the
different tasks that require it and, when necessary, repurpose
memory that is currently not in use. This is traditionally
done by a combination of static allocation and manual
management. Manual memory management is the source
of many software defects and requires careful analysis to
prevent memory corruption. The Real-time Specification for
Java (RTSJ) [2] is a high-level programming environment
that offers a safer alternative with a memory management
API based on regions, or scopes. Data objects are allocated
dynamically in scopes, and entire scopes are reclaimed at
once. Scopes enjoy fast allocation and constant time de-
allocation. Their main drawback is that in order to prevent
dangling references, i.e. references inside a scope that has
been reclaimed, the RTSJ mandates dynamic checks on
reference operations. These checks come at some runtime
overhead and entail the possibility of an exception being
thrown at runtime if the program attempts an illegal store.

The goal of this work is to prevent memory access errors
at compile-time. We propose to do this with a pluggable
ownership type system [5], an optional system of annotations
that restrict the set of valid programs accepted by the
compiler to a subset guaranteed to be free of memory
access errors. As valid programs do not throw memory
access exceptions, the compiler needs not emit code to
check the correctness of memory operations, thus potentially
speeding up execution. Our work is done in the context
of the upcoming Safety Critical Java (SCJ) specification1

which is designed to facilitate the certification of real-time

1http://www.jcp.org/en/jsr/detail?id=302

Java applications under safety-critical standards. In a safety-
critical setting, run-time exceptions must be shown to never
occur or to be handled correctly, thus they have a significant
cost in terms of verification effort. Ruling out exceptions on
all reference stores will thus greatly cut down verification
costs. The question whether a program will run out of
memory is a separate and orthogonal issue addressed by
memory usage analysis research [4].

The memory management facilities of SCJ are a special
case of region-based memory management which has been
used, most notably, in implementations of functional lan-
guages [13] and for memory-safe extensions of C [7]. Type
systems for safe region-based allocation were formulated
for ML [13], Cyclone [7] and Java [3], [17]. While our
system builds on these predecessors, we cannot reuse any
of them directly as they all require either (a) changes to
the source language to introduce type structures describing
regions, (b) changes to the semantics of certain operations
such as allocation or method invocation, or (c) compiler
support. The SCJ specification is designed under one hard
constraint, namely no changes to the Java syntax are allowed
(this is imperative to preserve the Java tool chain). We may
thus not deviate from the Java source syntax nor from the
Java bytecode format. Furthermore, the SCJ expert group
mandated that the memory safety annotations be optional
to allow users to opt in or out depending to the criticality
of their project. This entails that the presence (or absence)
of safety annotations should not modify the meaning of the
program or its execution characteristics. We also add two
design goals of our own: conceptual simplicity and minimal
effort. Many of the previous proposals were rather complex,
to encourage adoption we are looking for a system that is
as simple as possible while remaining expressive. A related
goal is that we want to minimize the programmer effort
involved in adding memory safety annotations to a program.

Satisfying the above mentioned constraints and our self-
imposed goals has proven to be more challenging than we
expected at first. The system presented in this paper is the
result of three years of work with many changes from our
original design to accommodate programming idioms that
are specific to SCJ. The contributions of this paper are:
• Design of a memory safety annotation system. The

type system targets Safety Critical Java programs and
leverage Java metadata annotations to express con-
straints on memory references without changing the
Java syntax or semantics. The system is simple as it
consists of only three distinct annotations (@Scope,
@RunsIn, @DefineScope) on variable, method, field

and class definitions.
• Implementation of static checker. The checker uses the

JSR-308 Checker Framework and is integrated in the
Java compiler to validate annotated source programs.
We have also modified a real-time Java virtual machine
to optimize checks for annotated programs.

• Formalism and Proof of soundness. We have formalized
key features of SCJ in a object calculus with a type
system that mirrors our annotations. A proof of sound-
ness of the type system demonstrates that well-typed
programs will not experience memory access errors.

• Evaluation. We use a suite of seven programs (26
KLOC) written against the SCJ API to evaluate the
software engineering impact of our annotations quan-
titatively in terms of added lines of code, and qualita-
tively in term of the challenges involved in refactoring
existing code to abide by the restrictions imposed
by our system. Lastly we evaluate the performance
impact of removing dynamic memory safety checks on
a LEON3 processor and a desktop x86 machine for
a subset of these programs (we observe performance
improvements ranging between 0.4% and 39%).

A workshop version of this paper appeared at [14]. Our
implementation and benchmarks are at:

http://sss.cs.purdue.edu/projects/rtss11

II. SAFETY-CRITICAL JAVA

The upcoming Safety Critical Java (SCJ) specification
presents embedded system developers with a programming
model that simplifies and streamlines that of the Real-time
Specification for Java.2 An SCJ application consists of
one or more (possibly nested) missions which themselves
are made up of a number of tasks, called schedulable
objects. For our purposes we can restrict our focus on the
memory management API of SCJ. The memory available
to an application is logically segmented in a number of
scoped memory areas or scopes. At application start up,
a single shared scope, referred to as immortal memory,
is available for shared persistent data. Each mission has a
shared mission scope which is available to all tasks that are
part of that mission or nested missions. Each schedulable
object (task) has its own private scope for allocation of
short-lived data, furthermore it can create nested, private,
sub-scopes. Allocation is performed by new expressions
which create and initialize objects in the current scope.
Deallocation occurs when no schedulable is active in a given
scope. At that point objects in the scope are reclaimed in a
single step.

A schedulable object can change its allocation context
by entering a scope. This gives rise to a parenting relation
between scopes, we say that if a scope S has been entered by

2This chapter is based on SCJ v0.71 from August 2010. For an
introduction to the RTSJ, we refer readers to [2].

Immortal
Memory

Mission
Memory

Private
Memories

PM1

Parenting
Relation

@2

@4 @5

@6

@1

@3

PM2

PM3

Figure 1: Memory Model.

a schedulable previously in scope S’, then S’ is the parent
of S. Each schedulable has an associated stack of active
scopes which is managed in a strict LIFO fashion. The
parenting relation induces a restriction on object references.
It is illegal for an object to hold a reference that points into
a child scope. Fig. 1 illustrates the logical memory of an
SCJ program consisting of one mission, two schedulables
and a number of objects allocated in different scopes. An
object can reference objects in the same scope (@2→@1),
parent (@3→@1) and ancestor scopes (@4→@2).

Immortal memory is represented by a singleton instance
of the ImmortalMemory class. Instances of the Mission-
Memory and PrivateMemory classes represent scopes of
missions and tasks. ImmortalMemory is used for allocation of
classes and static variables. A task’s allocation context can
be either one of MissionMemory or PrivateMemory. Mission-
Memory is the allocation context of the Mission.initialize()
method. PrivateMemory is the allocation context of the
handleAsyncEvent() method of the PeriodicEventHandler
class. By extension, we also refer to the scope in which an
object was allocated as the allocation context of this object.
When handleAsyncEvent() is called, its scope stack contains
immortal memory, the mission memory(-ies) and a single
private memory. The private memory is cleared when the
method returns. Unlike scopes in the RTSJ, private memories
are guaranteed to be accessed only by a single task.

The method enterPrivateMemory() is used to create and
enter a nested private scope. It takes as argument an instance
of Runnable whose run() method will be called. Once
that method returns, the nested scope and its contents are
reclaimed. The method executeInArea(r) can be used to
change temporarily the allocation context to another scope3

and execute the run() method of the argument object r in that
context. The target of the call can be an instance of Immortal-
Memory, MissionMemory or PrivateMemory. However, after
invoking executeInArea(), it is forbidden by a runtime check
to use enterPrivateMemory().

3The target need not be a parent scope; a recursive sequence of call can
jump around the scope tree.

A reference assignment x.f = y is valid if ax is the scope
of x (obtained by MemoryArea.getMemoryArea(x) and ay is
the scope of y, and either ax == ay or ay is a parent of ax.
If a program attempts to perform an assignment that is not
valid, an IllegalAssignmentError will be thrown. Assignments
to local variables and parameters, as well as assignments to
primitive types, are always valid.

III. MEMORY SAFETY ANNOTATIONS

We have designed a new system of memory safety anno-
tations which prevent the occurrence of IllegalAssignment-
Errors in SCJ programs. These annotations form a static
pluggable type system in the sense of Braccha [5] as they can
be layered over and above the existing Java type system, and
rejects programs with potentially invalid operations without
changing the behavior of valid programs. The annotations
are purely static and require no additional run-time type
information; they can be erased from the program without
impact on its execution in the same way as Java Generics [6]
(Java Generics do require insertion of run-time checks,
whereas we don’t). The set of valid annotated programs is
a strict subset of all SCJ programs. Some correct programs
will be rejected by our checker – this is always the case with
a static type system – but in our case, we have deliberately
opted for simplicity at the cost of expressive power. For
instance, we have chosen not to support a general form of
parametric polymorphism for methods and class definitions.
Instead, we limit polymorphism to carefully chosen patterns.
This simplifies the annotation system at the cost of occa-
sional code duplication. The starting point for this work was
our previous RTSS paper [17] and its follow ups [1], [16].
The core idea in that work was to use a simple ownership
type system [11] tied to syntactic properties of the program
(namely package names) to describe the scope structure and
place constraints on the direction of pointers. That work was
considered too restrictive to be practical for SCJ as it forced
a particular package structure on the code; furthermore, it
modified the semantics of programs (annotated programs
were rewritten by a pre-compiler) and lacked polymorphism
(any class used in multiple scopes had to be duplicated).
Finding a suitable set of annotations that do not have these
drawbacks and that have the potential of being adopted in
practice has proven surprisingly difficult. In this work we
leverage Java metadata annotations and introduce the three
new annotations shown in Table I to extend SCJ programs
without changing the syntax or semantics of SCJ. Metadata
annotations have the advantage of being supported by the
entire Java tool chain, but are limited in some significant
ways. It is, for example, not possible to annotate expressions
which leads to somewhat less elegant code.

A static type system expresses properties of the dynamic
behavior of programs as invariants that can be checked ahead
of time. In our case, we must turn the run-time parenting
relationship of scopes into a static property that can be used

to reason about the allocation contexts of objects on both
side of an assignment. We do this by asking developers
to provide symbolic names for all of the scopes that will
be created at run-time and to define the parenting relation
between these named scopes. Object references are also
annotated with scope names so that the checker can verify
that assignments never create dangling references.

A. Defining the Scope Tree

The first step is to define a static scope tree. The static
scope tree is the compile-time representation of the run-time
parenting relation. For this, we introduce the @DefineScope
annotation with two arguments, the symbolic name of the
new scope and of its parent scope. The checker will ensure
that the annotations define a well formed tree rooted at
IMMORTAL, the distinguished parent of all scopes. Scopes
are introduced by mission (MissionMemory) and schedu-
lable objects (PrivateMemory). Thus we require that each
declaration of a class that has an associated scope (for
instance, subclasses of the MissionSequencer class which
define missions, and subclasses of the PeriodicEventHandler
class which hold task logic) must be annotated with a scope
definition annotation. Furthermore, nested PrivateMemory
scopes are created by invocation of the enterPrivateMemory()
method. As Java does not allow annotation on expression,
we require that the argument of the method, an instance
of a subclass of SCJRunnable be annotated with a scope
definition. It is notable that scopes do not have names at
run-time; the only property we can rely on to connect the
run-time scope structure to the static scope structure is the
the distance from the root of the tree and the name of the
mission classes.

B. Associating References to Scopes

The key requirement for being able to verify a program
is to have a compile-time mapping of every object reference
to some node in the static scope tree. With that information,

Annotation Where Arguments Description
@DefineScope Any Name Define a new scope.

@Scope

Class Name Instances are in named scope.
CALLER Can be instantiated anywhere.

Field
Name Object allocated in named scope.

UNKNOWN Allocated in unknown scope.
THIS Allocated enclosing class’ scope.

Method

Name Returns object in named scoped.
UNKNOWN Returns object in unknown scope.

CALLER Returns object in caller’s scope.
THIS Returns object in receiver’s scope.

Variable

Name Object allocated in named scope.
UNKNOWN Object in an unknown scope.

CALLER Object in caller’s scope.
THIS Object in receiver’s scope.

@RunsIn Method
Name Method runs in named scope.

CALLER Runs in caller’s scope.
THIS Runs in receiver’s scope.

Table I: Annotation Summary. Default values in bold.

verification is simply a matter of checking that the right
hand side of any assignment is mapped to a parent (or same)
scope of the target object. This mapping is established by the
@Scope annotation which takes a scope name as argument.
Scope annotations can be attached to class declarations to
constrain the scope in which all instances of that class are
allocated. Annotating a field, local or argument declaration
constrains the object referenced by that field to be in a
particular scope. Lastly, annotating a method declaration
constrains the value returned by that method.

C. Limited Polymorphism
While a general form of parametric polymorphism for

scopes such as full-fledged Java generics [6] was felt to
be too complex by the SCJ expert group, we introduced
a limited form of polymorphism that seems to capture many
common use cases. Polymorphism is obtained by adding
the following scope variables: CALLER, THIS and UNKNOWN.
These can be used in @Scope annotations to increase code
reuse. A reference that is annotated CALLER is allocated
in the same scope as the “current” or calling allocation
context. References annotated THIS point to objects allocated
in the same scope as the receiver (i.e. the value of this)
of the current method. Lastly, UNKNOWN is used to denote
unconstrained references for which no static information is
available. Classes may be annotated CALLER to denote that
instances of the class may be allocated in any scope.

D. Allocation Contexts
To determine the scope in which an allocation expression

new C() is executed we need to associate methods with nodes
in our static scope tree. The @RunsIn annotation does this.
It takes as an argument the symbolic name of the scope in
which the method will be executed. An argument of CALLER
indicates that the method is scope polymorphic and that it
can be invoked from any scope. In this case, the arguments,
local variables, and return value are by default assumed to be
CALLER. An overriding method must preserve any @RunsIn
annotation inherited from the parent. THIS denotes a method
which runs in the same scope as the receiver.

E. Dynamic Guards
Dynamic guards are our equivalent of dynamic type

checks. They are used to recover the static scope information
lost when a variable is cast to UNKNOWN, but they are also
a way to side step the static annotation checks when these
prove too constraining. We have found that having an escape
hatch is often crucial in practice. A dynamic guard is a
conditional statement that tests the value of one of two pre-
defined methods, allocatedInSame() or allocatedInParent()
or, to test the scopes of a pair of references. If the test
succeeds, the check assumes that the relationship between
the variables holds. The parameters to a dynamic guard are
local variables which must be final to prevent an assignment
violating the assumption.

F. Other Issues

Java has a number of other features that must be addressed
to obtain a complete system. Reflection is luckily not part of
SCJ, so we do not have to worry about reflective calls. The
only exception is the newInstance() method which allocates
an instance of a class passed in as a parameter in the scope
of the managed memory represented by the receiver. The
checker requires that the argument be a constant class name
and the receiver of the invocation be annotated with a scope
name specifying the target scope. Arrays are another feature
that requires special treatment. By default, the allocation
context of an array T[] is the same as that of its element
class, T. Primitive arrays are considered to be labeled THIS.
The default can be overriden by adding a @Scope annotation
to an array variable declaration. The allocation context of
static constructors and static fields is IMMORTAL. Thus, static
variables follow the same rules as if they were explicitly an-
notated with IMMORTAL. Static methods are treated as being
annotated CALLER. We do not leverage Java generics in the
annotation system because Java generics are erased during
compilation of the program and no residual information is
left in the bytecode. While our current checker is working
at source level, one of the requirements for our annotation
system is to be enforceable on compiled bytecode class files
as well as source code.

G. Reducing Annotation Overhead

To reduce the annotation burden for programmers, an-
notations that have default values can be omitted from the
program source. For class declarations, the default value is
CALLER. This is also the annotation on Object. This means
that when annotations are omitted classes can be allocated
in any context (and thus are not tied to a particular scope).
Local variables and arguments default to CALLER as well.
For fields, we assume by default that they infer to the same
scope as the object that holds them, i.e. their default is THIS.
Instance methods have a default @RunsIn(THIS) annotation.

H. Memory Safety Rules

We will now review the constraints imposed by the
checker. Subclasses must preserve annotations. A subclass of
a class annotated with a named scope must retain the exact
same scope name. A subclass of a class annotated CALLER
may override this with a named scope. Method annotations
must be retained in subclasses to avoid upcasting an object
to the supertype and executing the method in a different
scope. The value of polymorphic annotations such as THIS
and CALLER can be inferred from the context in certain cases.
A concretization function translates THIS or CALLER to a
named scope. For instance a variable annotated THIS takes
the scope of the enclosing class (which can be CALLER or a
named scope). An object returned from a method annotated
CALLER is concretized to the value of the calling method’s
@RunsIn which, if it is THIS, can be concretized to the

enclosing class’ scope. We say that two scopes are the same
if they are identical after concretization. A method invocation
z=x.m(...,y,...) is valid (1) if its @RunsIn is the same as the
current scope or it is annotated @RunsIn(CALLER), (2) if the
scope of every argument y is the same as the corresponding
argument declaration or if argument is UNKNOWN, (3) if the
scope of the return value is the same as z. An assignment
expression x.f=y is valid if one of the following holds: (1)
x.f and y have the same scope and are not UNKNOWN or
THIS, (2) x.f has scope THIS and x and y has the same,
non-UNKNOWN scope, or (3) x.f is THIS, f is UNKNOWN and
the expression is protected by a dynamic guard. A cast
expression (C) exp may refine the scope of an expression
from an object annotated with CALLER, THIS, or UNKNOWN
to a named scope. For example, casting a variable declared
@Scope(UNKNOWN)Object to C entails that the scope of
expression will be that of C. Casts are restricted so that
no scope information is lost. An allocation expression new
C() is valid if the current allocation context is the same as
that of the class C. A variable or field declaration, C x,
is valid if the current allocation context is the same or a
child of the allocation context of C. Consequently, classes
with no explicit @Scope annotation cannot reference classes
which are bound to named scopes, since THIS may represent
a parent scope.

IV. FORMAL ACCOUNT OF MEMORY SAFETY

As with any non-trivial type system it is not immediately
obvious that the proposed rules actually guarantee memory
safety. In fact, as we experimented with different rules and
annotations, we repeatedly found unexpected corner cases
that we had not anticipated. In order to gain assurance we
propose to formalize the annotation system and prove a
soundness theorem that entails memory safety. The approach
we choose is to boil down SCJ and Java to a core calculus
with only the features that are relevant to showing memory
safety, namely, objects, dynamic allocation, scopes, refer-
ences and subtyping. We arrange the SCJ annotation system
as an extension of the Java type system so that any type
becomes a pair, consisting of a scope S and a class C. The
proof of soundness result is obtained by showing that a well
typed program under the extended type system will never
lead to an illegal memory access. The formalism is based
on the calculus presented in [15] which is an imperative
version of Featherweight Java [8]. The resulting language is
fairly minimal as shown by Fig. 2 which gives its complete
syntax. A program p is composed of a sequence of classes.
Each class C has a scope S, a parent class D, some fields
fd and methods md . A field declaration consists of a type
τ and a field name f. A method declaration is made up of a
return type τ , a runs-in scope S, a sequence of arguments τx
and a body composed of statement s; return y. Statements
include composition s; s, assignment to a final local variable
τ x = y.f, assignment to a field x.f = y, upcast τ x = (C)y,

allocation τ x = new C, method invocation τ x = y.m(z),
dynamic guard (x

@
= y) x.f = y, and return return x. We use

a “named form,” where expressions do not nest and must be
immediately stored in a final variable as this simplifies the
syntax. Another simplification is the elimination of implicit
upcasts for arguments, return values, and assignments. All
casts are performed explicitly by cast statements which
simplifies the other rules as they can assume type equality.
These simplifications do not reduce the expressive power of
the language, any Java program can be written in this form.

The SCJ API has been reduced to its essence. We
assume that the Object class has final methods enter ()
and execInArea (x), which correspond to the SCJ meth-
ods enterPrivateMemory(r,l) and executeInArea(x). We omit
newInstance(c) as it can be encoded with execInArea. The
return type of enter () is the Simm Object and it always
returns the null value. Its behavior is to call the run method of
the reciever. The execInArea method will jump to the scope
of the receiver and execute the run method of its argument.

The notation is standard from [8] and [15]. An overbar, x,
means a possibly empty sequence x1 . . . xn. The shorthand
x op y denotes the pointwise extension of any predicate
op to a sequence, i.e. x1 op x1, . . . , xn op xn. Unsurprising
auxiliary definitions come from [15] and can be found in
appendix in the extended version of this paper. Metavariable
S represents ranges of scope names. Distinguished variables
Scall, Sthis, Simm and Sunk represent the caller, this, immortal
and unknown scopes. The features of Java we have omitted
include interfaces, exceptions, primitive data types, arrays,
generics, access modifiers, static methods, and threads.
While important in their own right they are not required
and adding them would not impact our result.

A. Static Semantics

The static semantics is given by the rules of Fig. 3. For
simplicity we will assume that all types τ occurring in a
SCJ program are well formed, i.e. if τ = SC then either
scope(C) ∈ {Scall,S} or S = Sunk. The function scope(C)
returns the declared scope of class C and scope(C.m)
return the scope of the return value of method m in class

p ::= cd

cd ::= S class C extends D {fd md}
fd ::= τ f
md ::= τ S m(τ x) {s; return y}
s ::= s;s | τ x = y.f | x.f = y | τ x = (C)y |

| τ x = new C | τ x = y.m(z) |
(x

@
= y) x.f = y | return x

τ ::= S C

Figure 2: SCJ’s syntax. C,D are class names, f,m are field and
method names, and x, y, z are names of variables or parameters. this
is a distinguished variable. For simplicity, we assume that names
of classes, fields, methods and local variables are distinct.

(T-CLASS)

fd OK in C methods(C) OK in C S 6= Sunk

S 6= Sthis scope(D) ∈ {Scall,S}
S class C extends D {fd md} OK

(T-METHOD)
E = x : τx, this : τthis E C.m ` s override(m,D, τx → τ, S)

S 6= Sunk

τ Sm(τx x){s} OK in C

(T-FIELD)
scope(C) = S′ S ∈ {S′, Sthis} ∪ parents(S′)

scope(D) ∈ {S, Scall}
SD f OK in C

(T-FIELD-THIS)
scope(C) = S scope(D) ∈ {S, Scall}

Sthis D f OK in C

(T-FIELD-UNK)
scope(C) = S scope(D) ∈ {S, Scall} ∪ parents(S)

Sunk D f OK in C

Auxiliary Definitions:

S 6= Sthis
S↓S′= S

S = Sthis
S↓S′= S′

S 6= Scall S 6= Sthis
S↓D.m= S

S = Scall
S↓D.m= runsin(D.m)↓D

S = Sthis
S↓D.m= S↓D

scope(D) 6= Scall
S↓D= S↓scope(D)

scope(D) = Scall
S↓D= S

(T-SELECT)
E(y) = SC type(C.f) = S′ C′ S′ 6= Sthis

E D.m ` S′ C′ x = y.f

(T-SELECT-THIS)
E(y) = SC type(C.f) = Sthis C

′

E D.m ` SC′ x = y.f

(T-WRITE)
E(x) = SC E(y) = type(C.f) = S′ C′ S 6= Sunk S′ 6= Sthis

E D.m ` x.f = y

(T-WRITE-THIS)
E(x) = SC type(C.f) = Sthis C

′ E(y) = SC′

S 6= Sunk scope(D) = S

E D.m ` x.f = y

(T-NEW)
scope(C) ∈ {S↓D.m,Scall} S↓D.m= runsin(D.m)↓D

E D.m ` SC x = new C
(T-CAST)

E(y) = S′ C′ C′ <: C S′ ↓D.m= S↓D.m
E D.m ` SC x = (C)y

(T-CAST-UNK)
E(y) = S′ C′ C′ <: C

E D.m ` Sunk C x = (C)y

(T-CALL)

E(y) = S′ C′ type(C′.m′) = S′′, Sx Cx → Sm Cm
E(z) = Sz Cm (Sx ↓S′)↓D.m∈ {Sunk, Sz ↓D.m}

(S′′ ↓S′)↓D.m∈ {Scall, runsin(D.m)↓D}
S↓D.m∈ {Sunk, (Sm ↓S′)↓D.m} S′ 6= Sunk ∨ Sx 6= Sthis

E D.m ` SCm x = y.m′(z)

(T-ENTER)
E(x) = SC runsin(D.m)↓D= parent(runsin(C.run))

E D.m ` τ y = x.enter()
(T-EXEC-AREA)

E(x) = SC E(x′) = S′ C′

runsin(C′.run) = S ∈ parents(runsin(D.m)↓D)

E D.m ` τ y = x.execInArea(x′)

(T-IF-SAME)
E(x) = SC E(y) = S′ C′ type(C.f) = Sthis C

′

E D.m ` (x
@
= y) x.f = y

(T-RETURN)
type(D.m) = S, τx → S′ C′ E(x) = S′ C′

E D.m ` return x

Figure 3: Static semantics.

C. runsin(C.m) returns the runs-in scope of the method
declaration. We assume the presence of an ordered set of
symbolic scope names such that parent(S) returns the direct
parent of scope S, parents(S) return the transitive closure
of the parent relation, and parents(Simm) = ∅. The function
type(C.m) returns the runs-in scope, sequence of arguments
and the return type.

The static semantics is composed of three kinds of rules.
The validity of a class is expressed as cd OK which says
that a class is valid. Rules md OK in C and fd OK in C
state that a method or field declaration is well-typed in the

context of some class C. Lastly rules of the form E D.m ` s
state that statement s is well-typed in environment E and
method m of class D. (T-CLASS) ensures that the scope of a
class is either the same as its parent or its parent is Scall and
the class has a named scope. (T-METHOD) ensures that body
of a method is well typed. The override auxiliary function
ensures that the type and scope of an overriding definition
match previous declarations of the method in parent classes.
The three rules for a field declaration S D f ensure that if
the field is declared of scope Sthis and class D occurring
within class C, then class D has either same scope as the

Syntax:
R ::= ε | R 〈ρ cH〉
H ::= [] | H[o 7→ v]
r ::= oρc

S ::= ε | S 〈D.mmF ρ〉s
F ::= [] | F [y 7→ r]
v ::= C(r)

Dynamic Semantics:
(D-RETURN)

S = S′ 〈D.mF ′ ρ x = y′.m′(z); s〉〈D′.m′ F ρ′ return y〉
RS → RS′ 〈D.mF ′[x 7→ F (y)] ρ s〉

(D-CAST)

RS 〈D.mF ρ τ x=(C)y; s〉 → RS 〈D.mF [x 7→F (y)] ρ s〉

(D-SELECT)

R = R′〈ρ′ cH〉R′′ F (y) = oρ
′
c H(o) = C(r ri r′)

RS 〈D.mF ρ τ x=y.fi; s〉 → RS 〈D.mF [x 7→ ri] ρ s〉

(D-UPDATE)

R = R′′〈ρ′ cH〉R′′′ F (x) = oρ
′
c

H(o) = C(r ri r′) R′ = R′′〈ρ′ cH[o 7→ C(r F (y) r′)]〉R′′′

RS 〈D.mF ρ x.fi=y; s〉 → R′ S 〈D.mF ρ s〉

(D-CALL)
S = S′ 〈D.mF ρ τ x=y.m′(z); s〉 R = R′〈ρ cH〉R′′

F (y) = oρc H(o) = C(r′) F (z) = r
mbody(C.m′) = (τx x′; s

′) F ′ = [x′ 7→ r][this 7→ r]

RS → RS 〈C.m′ F ′ ρ s′〉

(D-NEW)
R = R′′〈ρ cH〉R′′′ o 6∈ dom(H)

R′ = R′′〈ρ cH[o 7→ C(null)]〉R′′′

RS 〈D.mF ρ τ x = newC; s〉 → R′ S 〈D.mF [x 7→ oρc] ρ s〉

(D-IF-SAME-T)

R = R′′〈ρ′ cH〉R′′′ F (x) = oρ
′
c F (y) = o′

ρ′

c

H(o) = C(r ri r′) R′ = R′′〈ρ′ cH[o 7→ C(r o′
ρ′

c r′)]〉R′′′

RS 〈D.mF ρ (x
@
= y) x.f = y; s〉 → RS 〈D.mF ρ s〉

(D-IF-SAME-F)

F (x) = oρc F (y) = o′
ρ′

c′ ρ 6= ρ′

RS 〈D.mF ρ (x
@
= y) x.f = y; s〉 → RS 〈D.mF ρ s〉

(D-ENTER)
S = S′ 〈D.mF ρ τ y = x.enter(); s〉

R = R′〈ρ cH〉〈ρ′ c′H ′〉R′′

F (x) = oρ
′′

c′′ 〈ρ′′ c′′H ′′〉 ∈ R H ′′(o) = C(r)
F ′ = [this 7→ r] mbody(C.run) = s′

if ρ′ ∈ S then R′′′ = 〈ρ′ c′H ′〉 else R′′′ = 〈ρ′ c′ + 1 ε〉
R S → R′ 〈ρ cH〉R′′′R′′ S 〈C.runF ′ ρ′ s′〉

(D-EXEC-AREA)
S = S′ 〈D.mF ρ τ y = x.execInArea(x′); s〉

R = R′〈ρ cH〉R′′ F (x) = oρ
′

c′ 〈ρ′ c′H ′〉 ∈ R
ρ′ ∈ S F (x′) = o′

ρ′′

c′′ 〈ρ′′ c′′H ′′〉 ∈ R
H ′′(o) = C(r) F ′ = [this 7→ o′

ρ′′

c′′] mbody(C.run) = s′

S′′ = S′ 〈D.mF ρ τ y = x.execInArea(x′); s〉〈C.runF ′ ρ′ s′〉
R S → R S′′

Figure 4: Dynamic syntax and semantics.

enclosing class C, or is declared Scall. If a field is declared
SunkD then the scope of D must either be Scall or one of
the parents of C. Lastly, for all other cases the scope of the
enclosing class C must be in the same as (or parent of) S.

The rules for expressions must take care of concretization
of scope annotations and a number of special cases. (T-
SELECT) states that reading a field y.f and storing is allowed
if the type and scope of the field match the target local
variable. If the field is annotated THIS then the target variable
must have the same scope as that of the object that holds the
field f. (T-WRITE-THIS) and (T-WRITE) cover assignments
to fields and ensure that the scope of the field and of
the variable to store in it match. (T-NEW) checks that a
newly allocated object is created in a scope that, after
concretization, is equal to the scope of the current method.
The concretization predicate S↓D yields S if the scope is not
Sthis or if scope(D) is Scall and scope(D) otherwise. S↓D.m
is similar except when the scope is Scall, in which case the
@RunsIn of the method is used. (T-CAST) allows upcasts
as long as the scope is not modified, while (T-CAST-UNK)
allows to cast any scope to unknown. (T-ENTER) makes sure
that the target object has a run method with a scope that is
a child of the caller. (T-EXEC-AREA) is required to run in a
parent scope of the caller. (T-IF-SAME) allows the storing a

variable of unknown scope in THIS field if a dynamic guard
established that scopes are equivalent. (T-RETURN) ensures
that the return type of a method has the declared scope.

B. Dynamic Semantics

We formulate SCJ’s dynamic semantics as a small-step
operational semantics. Fig. 4 shows the syntax used for
heaps, regions, references, call stacks, call frames, and
objects. We model a region as a triple 〈ρ cH〉 where ρ is a
region identifier, c is time stamp that is incremented every
time the data in the region is deallocated. H is a mapping
from unique addresses to objects. The key intuition is that
whenever a reference is accessed we must check that the
region that it points into has the same time stamp, if not
an error has occurred. A configuration RS is a pair of a
region stack and the call stack of the single thread. Fig. 4
lists the rules for one step of computation RS → R′ S′.
(D-UPDATE) presents the critical assignment rule. Its con-
clusion, RS 〈D.mF ρ x.fi=y; s〉 → R′ S 〈D.mF ρ s〉, states
that in a configuration with topmost call frame containing
an assignment to the i-th field of object referenced by x
evolves in one step the configuration with a modified stack
of regions R′. The antecedents for this rule to be applicable
require that x and y be valid references, and in particular
that y point to some scope ρ′′ whose position in the scope

stack is equal or above to the scope ρ′ of x. Note that in (D-
SELECT), execution will get stuck if the time stamp is not
current. (D-ENTER) checks if the scope about to be entered
is already on the call stack and if not clears the scope.

C. Properties

The goal of the type system is to prevent particular errors.
In our case, the type system ensures, as usual, that a well-
typed program will make disciplined use of object (i.e. all
fields and methods are present when accessed, and the right
types are passed/returned). Moreover it will guarantee that
all references accessed by the program are valid (i.e. that
they point to scopes that are on the scope stack, with valid
time stamps). To prove that this is the case we will reason
inductively on configuration. We will define the notion of a
well-formed configuration, written RS is WF, which states
that the region and the call stack are well-formed and
contains no invalid references. The proof then shows that any
evaluation step preserves well-formedness and that a well-
formed configuration can always take another step (unless
the program has terminated).

Runtime Subtyping: To check that a configuration is well-
formed we need to verify that references are well-typed.
This is more subtle than it seems at first due to polymorphic
annotations such as THIS which have no run-time equivalent.
We thus define the run-time subtyping relation, r <:Rρ,ρ′ τ
indicates that a reference r is an instance of type τ at run-
time, in the context of a scopes ρ and ρ′ and the region stack
R. Let τ = SC, r = oρ

′′

c′′ , ρ be the scope of this, and ρ′ be
the scope of the method being executed. For subtyping to
hold it must be the case that R ≡ R′〈ρ′′ c′′H[o 7→ v]〉R′′.
The relation holds if v = null. Otherwise if v = D(r), it
must be the case that D <: C and: If S = Sthis, then ρ′′ = ρ.
If S = Sunk the relation holds. If S = Scall then ρ′′ = ρ′.
Otherwise, ρ′′ = |parents(S)|.

Well-formed configurations: A configuration is well-
formed, written R S is WF, if the region stack and call stack
are well-formed and the class table is well-typed. A region
stack R is well-formed if it is empty or if all fields of all
objects it contains are well-typed, meaning that the reference
corresponding to each field is a runtime subtype of the static
type of that field, the reference points to a region below in
which the field’s object belongs, and the region counter is
equal to the counter of the region itself. A call stack S is
well-formed if each frame F ∈ S is well-formed. A frame
F is well-formed if for each variable x in its domain, the
reference is a runtime subtype of the static type of x and
its region counter matches that of the region in which the
referenced object lives. The rules appear in Fig. 5.

We prove type soundness of SCJ by showing preservation
and progress. Here, preservation means that reduction of a
well-formed configuration results in a well-formed configu-
ration, and the proof of preservation states that after a step of
reduction a well-formed configuration remains well-formed.

(WF-CONFIGURATION)
∀ρ ∈ S, 〈ρ cH〉 ∈ R is WF in R ∧ 〈ρ cH〉 nests in R

S is WF in R
R S is WF

(WF-IMM-REGION)

〈0 cH〉 nests in R

(WF-REGION-NEST)
R = R′〈ρ cH〉〈ρ+ 1 c′H ′〉R′′

〈ρ+ 1 c′H ′〉 nests in R

(WF-NULL-FIELD)

wff(ρ′, null, τ, R)
(WF-EMPTY-REGION)

〈ρ c ε〉 is WF in R

(WF-FIELD)
〈ρ cH[o 7→ v]〉 ∈ R
ρ ≤ ρ′ oρc <:Rρ′,∅ τ

wff(ρ′, oρc , τ, R)

(WF-REGION)
R = R′〈ρ cH〉R′′

〈ρ cH〉 is WF in R
∀i ∈ [1, |r|].wff(ρ, ri, type(C.fi), R)

oρc <:R∅,ρ scope(C)C

〈ρ cH[o 7→ C(r)]〉 is WF in R

(WF-FRAME)

locals(D.m, F) = E D.mE ` s F (this) = o′
ρ′

c′

E(x) = SC oρc <:Rρ′,ρ′′ S↓D.m C 〈ρ cH〉 ∈ R
〈D.mF ρ′′ s〉 is WF in R S′ = runsin(D.m)↓D

(S′ = Scall ∨ (S′ = Sthis ∧ ρ′ = ρ) ∨ ρ = |parents(S′)|
〈D.mF [x 7→ oρc] ρ

′′ s〉 is WF in R

(WF-FRAME-NULL)
locals(D.m, F) = E D.mE ` s

〈D.mF ρ′′ s〉 is WF in R
〈D.mF [x 7→ null] ρ′′ s〉 is WF in R

(WF-STACK)
S = S′′〈D.mF ρ y.m′(z)〉 is WF in R

S′ = 〈D′.m′ F ′ ρ s〉 is WF in R
SS′ is WF in R

(WF-STACK-ENTER)
S = S′′〈D.mF ρ y.enter()〉 is WF in R E(y) = SC

S′ = 〈C.run [this 7→ F (y)] ρ+ 1 s〉 is WF in R
SS′ is WF in R

(WF-STACK-EXEC-AREA)
S = S′′〈D.mF ρ y.execInArea(z)〉 is WF in R E(y) = SC
E(z) = S′ C′ S′ = 〈C′.run [this 7→ F (z)] ρ′ s〉 is WF in R
ρ′ ≤ ρ ρ′ = |parents(runsin(C′.run))| = |parents(S↓D.m)|

SS′ is WF in R

Figure 5: Well-formedness rules.

Theorem 4.1: Preservation. If R S is WF and R S →
R′ S′, then R′ S′ is WF.

A thread is active, written active(S), if it has not stuck on
a null pointer exception and if there are more instructions to
evaluate. Progress ensures that if the configuration is well-
formed and the thread is active, then it is possible to take a
step of reduction.

Theorem 4.2: Progress. If R S is WF and active(S) then
R S → R′ S′.
Proofs are in the full paper on the project web page.

Case Study LOC Classes Methods SCJ @DefineScope @Scope @RunsIn Annotation Benchmarks
Entities Density LEON3 x86-rt

Quicksort 420 5 21 2 2 6 7 3.6% 39% 26.1%
Thruster 1 067 17 36 6 21 28 16 5.9% — —
Fast-MD5 1 148 6 31 2 2 2 2 0.5% 2.4% 18.4%
Webserver 1 679 28 40 6 14 18 14 2.7% — —
CDx 3 741 31 142 2 2 24 27 1.4% 1.4% 4.5%
Railsegment 5 413 50 197 23 23 86 170 5.1% — —
JPapaBench 12 708 150 757 17 17 45 56 0.9% 0.4% 1.7%
Total 26 176 287 1 224 58 81 209 292 2.2% — —

Table II: Case Studies. The SCJ Entities represent the number of MissionSequencer and Schedulable implemented. The Annotation
Density column shows the percentage of the code in each benchmark that is annotated.

V. EVALUATION

We implemented a static verifier, SCJ-Checker, using
the Checker Framework (JSR308) which is part of Java 7
and allows an extended annotation syntax. In particular it
supports annotations on local variables. Our implementation
is 5 KLOC and is integrated into the javac compiler. In
order to conduct a field test of the annotation system,
we have gathered an extensive set of SCJ applications.
We used two synthetic benchmarks, Quicksort and Fast-
MD5, three small RTSJ applications, Thruster, Webserver,
and Railsegment – developed by A. Wellings, Sun, and
Atego Inc. respectively and two larger RTSJ benchmarks:
CDx [12] and JPapabench [9]. In all cases, we converted
the RTSJ programs to SCJ, applied the annotations and
verified each application using the SCJ-Checker. We also
report performance numbers. The oSCJ VM was used to
execute the applications [12]. We have modified oSCJ to
omit scope checks for annotated programs.

A. Use Cases

Table II summarizes the development effort involved in
adding annotations to our benchmark suite. The table gives
the size of each application (LOC, number of classes and
number of methods). The total size is 26 KLOC and 287
classes. More germane to the SCJ development effort, the
table gives the number of SCJ entities (MissionSequencer
and Schedulable classes which must be annotated); this
ranges between 2 and 23. The key metric is the annotation
density, or the ratio of SCJ annotations per line of code.
This ranges between 0.5% and 5.9%. The higher numbers,
Thruster and Railsegment, are either small or are frameworks
with little behavior. CDx and JPapabench are the most
representative of real programs and they have 0.9% and
1.4%. We conclude memory safety annotations meet our
goal of being lightweight.

Some other issues have come up. Class Duplication.
The most displeasing aspect of assigning classes to named
scopes, mentioned in [1], is the necessity to duplicate classes
that are to be used in different scopes. This can be some-
times alleviated by using polymorphic annotations (CALLER).
We encountered this issue when refactoring JPapabench,
where a task handler class was used to instantiate several
different handlers. And since each handler must be explicitly

annotated with a unique scope name, the annotation system
required us to duplicate the class. Restrictions. The annota-
tion system is conservative and may prevent the checking of
correct programs. We have not encountered any such case
in our benchmark suite. String Literals. Strings constants
are statically allocated objects and thus should be implicitly
IMMORTAL. However, this prevents users from assigning a
string literal to a local variable even though the string literal
is immutable. Therefore, we chose to treat these strings as
CALLER so they may be safely assigned to local variables.
Standard Libraries. Even though the system requires annota-
tion of standard Java libraries, we believe that this one-time
cost paid by JVM vendors is negligible in comparison to
the costs of sanitizing those libraries to qualify them for
safety certification and then actually gathering all of the
required safety certification evidence. While refactoring CDx
and Railsegment, a customized HashMap version had to be
implemented to allow cross-scope invocation of its methods.

B. Case Study: CDx

Based on our experience, the effort required to refactor
a correct RTSJ application to a verifiable SCJ program
is small. RTSJ developers already do much of the work
required to add annotations. They must envision the scope
structure and reason about allocation context while coding.
Thus adding annotation is usually a straightforward doc-
umentation step which aids in peer review and software
maintanance. Consider the CDx benchmark, excerpted in
Fig. 6. The class Handler is a periodic event handler. Its role
in the application is to track aircrafts represented by their
Sign and updates their positions in the Table. The classes are
written with a minimum number of annotations (though the
figure hides much of the logic which has no annotations at
all). We divide the process of annotating the code into three
simple refactoring steps.

First, we annotate MissionSequencers, their Missions, and
Schedulables as dictated by SCJ. This does not represent
any challenge since the annotations only reflect the scope-
memory rules defined by SCJ. Thus users express these
rules explicitly in the code, increasing the code’s clarity.
By experience, this simple step alone accounts for a large
number of all annotations needed. In this step, @Scope(”M”)
and @DefineScope(”P”,”M”) are added to the handler’s decla-
ration to indicate that instances will be allocated in the scope

named M and that the PrivateMemory instance associated
with the handler is referred to as P. The handleAsyncEvent()
method is annotated @RunsIn(”P”) to indicate that while the
enclosing class is allocated in mission memory, the method
will be called from a scope with symbolic name P.

In the second refactoring step, we determine the @Scope
of each class and the @RunsIn of their methods. Classes that
will be used in different scopes need no @Scope annotation
due to the defaulting rules. This is the case of Sign and
V3d. The Handler class is already annotated, we only add

@Scope("M") @DefineScope(name="P", parent="M")
class Handler extends PeriodicEventHandler {

 Table t;
 Run r = new Run();

 @RunsIn("P") void handleAsyncEvent() {
 Sign s = ...;
 @Scope("M") V3d old = t.get(s);
 if (old == null) {
 @Scope("M") Sign ns = mk(s);
 put(ns);
 } else ...
 }

 @RunsIn("P") @Scope("M") Sign mk(Sign s) {
 @DefineScope(name="M", parent="IMMORTAL")
 @Scope(IMMORTAL) ManagedMemory m =
 (ManagedMemory) MemoryArea.getMemoryArea(t);
 @Scope("M") Sign ns = m.newInstance(
 Sign.class);
 ns.b = (byte[]) m.newArrayInArea(t,
 byte.class, s.b.length);
 ...
 return ns;
 }

 @RunsIn("P") void put(@Scope("M") Sign s) {
 r.s = s;
 ManagedMemory.getMemoryArea(t).
 executeInArea(r);
 }

 class Run implements SCJRunnable {

 Sign s;

 @RunsIn("M") void run() { t.put(s); }
 }
}

@Scope("M") class Table {

 @RunsIn(CALLER) @Scope("M")
 V3d get(@Scope(UNKNOWN) Sign s) {...}

 void put(@Scope("M") Sign s) {...}
}

Figure 6: Annotated CDx classes.

@RunsIn(”P”) to the remaining methods. Table is annotated
@Scope(”M”) so that it can be referenced from Handler and
from objects in the nested scope P. Further, the Table.get()
method is annotated @RunsIn(CALLER), to enable cross-
scope communication, and @Scope(”M”), to return objects
allocated in M. The argument is UNKNOWN because the
method can potentially be called from any subscope. The
Table.put() method has no @RunsIn annotation and thus
defaults to the scope of its class.

The final step focuses on reference assignments. This is
eased by the annotations from the previous steps. Consider
the handleAsyncEvent() method. The first assignment is
old=t.get(s). The left hand side is declared to be in M which
matches the return type of Table.get(). The same reason-
ing holds for the assignment to ns. Handler.mk() method
creates a copy of s in M. First, SCJ’s getMemoryArea()
method returns an object representing M, variable m holding
the object is annotated with @Scope and @DefineScope
to statically capture this information. The newInstance()
method then returns instance of Sign.class in the scope
represented by m. The resulting object is assigned to ns,
which must be explicitly annotated @Scope(”M”). Similarly,
Sign’s byte array is instantiated in M by newArrayInArea();
however, no annotation is needed, since the scope of the
field cs is the same as the scope of its owner ns. The
Handler.put() method is responsible for storing new Sign
object into the Table. Since Table.put() is @RunsIn(”M”), a
special runnable is used to switch execution context to M by
calling executeInArea(), and then the method can be safely
invoked. Finally, a HashMap implementation annotated with
@RunsIn(CALLER) annotations is necessary to complement
the Table implementation. The checker can validate that this
program is memory safe since all reference assignments and
method invocations are valid.

C. Performance

Statically proving memory safety allows the VM to opti-
mize out the runtime checks that verify reference assignment
operations. We use two platforms to measure the perfor-
mance impact of removing scope checks. The LEON3 is
a Xilinx Spartan3-1500 board at 40Mhz with 64MB of
PC133 SDRAM and with the RTEMS v4.9.3 OS. x86-rt
is an Intel Pentium 4 3.80GHz single core machine with
3GB of RAM, Ubuntu Linux 9.04 with the 2.6.28-3-rt 32-
bit RT PREEMPT kernel. The following four programs were
suitable for throughput measurements: Quicksort, Fast-MD5,
CDx and JPapabench. Results are presented in Table II as a
percentage overhead of dynamic scope checks measured on
both platforms. The largest improvement in performance are
observed for Quicksort, with 26.1%. This is clearly because
that workload is dominated by reference assignments. Other
workloads show that removing scope checks have a smaller
impact. CDx and JPapabench being representative real-time
application show modest improvements of 4.5% and 1.7%,

respectively, on x86-rt. The results on the LEON3 board
are somewhat obscured by the board’s lack of a floating
point unit. Thus Fast-MD5, CDx and JPapabench show
small relative improvement because the execution time is
dominated by floating point overheads.

VI. RELATED WORK

The Aonix PERC Pico virtual machine introduces stack-
allocated scopes, an annotation system, and an integrated
static analysis system to verify scope safety and analyze
memory requirements. The PERC type system [10] intro-
duces annotations indicating the scope in which a given
object is allocated. A byte-code verifier interpreting the
annotations proves the absence of scoped memory protocol
errors. The PERC Pico annotations do not introduce absolute
scopes identifiers. Instead, they emphasize scope relation-
ships (e.g. argument A resides in a scope that encloses
the scope of argument B). This allows more generic reuse
of classes and methods in many different scopes, rather
than requiring duplication of classes for each distinct scope
context at the cost of a higher annotation burden. The
PERC annotations address sizing requirements which are
not considered here. The authors of [3] proposed a type
system for Real-Time Java. Although the work is applied
to a more general scenario of RTSJ-based applications, it
shows that a type system makes it possible to eliminate
runtime checks. In comparison to the approach in this
work, the proposed type system provides a richer but a
more complex solution. Scoped Types [17], [1] introduce
a type system for RTSJ which ensures that no run-time
errors due to memory access checks will occur. Furthermore,
Scoped Types capture the runtime hierarchy of scopes and
subscopes in the program text by the static hierarchy of Java
packages and by two dedicated Java annotations. The authors
demonstrates that it is possible to statically maintain the
invariants that the RTSJ checks dynamically, yet syntactic
overhead upon programmers is small. The solution presented
by the authors is a direct ancestor of the system described
in this paper.

VII. CONCLUSION

This paper presents an annotation system that prevents
memory access errors in safety critical Java applications. The
system is designed to be optional and, in contrary to related
approaches, does not require changing the Java syntax or
semantics. Formalization and the proof of soundness of the
system demonstrate that well-typed programs are guaranteed
to be free of memory access errors. We further apply the
system on a suite of SCJ case studies (26 KLOC) and
show that the annotations are lightweight while delivering
required expressiveness. Our solution is integrated in the
Java compiler, and its use leads to an observed performance
improvements ranging from 1.7% to 26% due to the elimi-
nation of runtime scope checks.

REFERENCES

[1] C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and
T. Zhao. Scoped types and aspects for real-time Java memory
management. Realtime Systems Journal, 37(1), 2007.

[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Addison-
Wesley, June 2000.

[3] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Own-
ership types for safe region-based memory management in
real-time Java. In PLDI, 2003.

[4] V. A. Braberman, F. J. Fernández, D. Garbervetsky, and
S. Yovine. Parametric prediction of heap memory require-
ments. In ISMM, 2008.

[5] G. Bracha. Pluggable type systems. In OOPSLA Workshop
on Revival of Dynamic Languages, 2004.

[6] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making
the future safe for the past: Adding Genericity to the Java
programming language. In OOPSLA, 1998.

[7] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in cyclone. In
PLDI, 2002.

[8] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Transactions
on Programming Languages and Systems, 23, 2001.

[9] T. Kalibera, P. Parizek, M. Malohlava, and M. Schoeberl.
Exhaustive testing of Safety Critical Java. In JTRES, 2010.

[10] K. Nilsen. A type system to assure scope safety within safety-
critical Java modules. In JTRES, 2006.

[11] J. Noble, J. Potter, and J. Vitek. Flexible alias protection. In
ECOOP, 1998.

[12] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and
J. Vitek. Developing Safety Critical Java applications with
oSCJ/L0. In JTRES 10, 2010.

[13] J.-P. Talpin and P. Jouvelot. Polymorphic type, region, and
effect inference. Journal of Functional Programming, 1992.

[14] D. Tang, A. Plsek, and J. Vitek. Static checking of safety
critical java annotations. In JTRES, 2010.

[15] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci:
Simple thread-locality for Java. In ECOOP, 2009.

[16] T. Zhao, J. Baker, J. Hunt, J. Noble, and J. Vitek. Implicit
ownership types for memory management. Science of Com-
puter Programming, 2008.

[17] T. Zhao, J. Noble, and J. Vitek. Scoped types for real-time
Java. In RTSS, 2004.

APPENDIX

Type Soundness
We prove type soundness of SCJ by showing preservation and progress. Here, preservation means that reduction of a

well-formed configuration results in a well-formed configuration, and the proof of preservation states that after a step of
reduction a well-formed configuration remains well-formed.

Theorem A.1: Preservation. If R S is WF and R S → R′ S′, then R′ S′ is WF.
Proof: We proceed by structural induction on the derivation of the reduction relation. For all cases, let E be the typing

environment of the topmost method of the call stack S. Let rtype(r) represent the runtime type of a reference r. That is,
if r = oρc and R = R′〈ρ cH[o 7→ C(r)]〉R′′, then rtype(r) = C.

Case (D-RETURN):
1) RS 〈D′.mF ′ ρ τ x = y′.m′(z); s〉〈C′′.m′ F ρ′ return y〉 by (D-RETURN).
2) F (this) = o′

ρ′′

c′ by (WF-FRAME).
3) Let rtype(F ′(this)) = D′.
4) Let E′ be the typing environment obtained by type checking D′.m.
5) E′(y′) = S′′′ C′′ by (T-CALL).
6) type(C′′.m′) = S, τx → S′ C′ by (T-CALL).
7) E(y) = S′ C′ by (T-RETURN).
8) F ′(this) = o′′

ρ′′′

c′′ by (WF-FRAME).
9) F (y) = r by (D-RETURN). We show that r <:Rρ′′′,ρ S

′′ ↓D.m C′ by case analysis on r:

a) If r = null then the relation holds. Otherwise, let r = oρ
′

c .
b) Otherwise, let r = oρ

′

c . oρ
′

c <:Rρ′′,ρ′ S
′ ↓C′′.m′ C′ by (WF-FRAME).

c) E′(x) = S′′ C′ by (T-CALL).
d) oρ

′

c <:Rρ′′′,ρ S
′′ ↓D.m C′ by case analysis on S′′ ↓D.m:

i) If S′′ ↓D.m= Sunk then the relation holds.
ii) If S′′ ↓D.m= Scall then the relation holds if ρ = ρ′.

A) If m′ is either enter and execInArea, this case does not apply because their return type is in Simm.
B) Otherwise, this holds by (WF-STACK).

iii) If S′′ ↓D.m= Sthis then the relation holds if ρ′ = ρ′′′. By (T-CALL), (S′ ↓S′′′)↓D.m= Sthis. By definition of ↓,
S′′′ and S′ are also Sthis. By (WF-FRAME), ρ′ = ρ′′. Also by (WF-FRAME), ρ′′ = ρ′′′. Therefore, ρ′ = ρ′′′

and the relation holds.
iv) Otherwise, S′′ ↓D.m= S′ ↓C′′.m′ by (T-CALL), so the relation holds.

10) RS 〈D′,mF ′[x 7→ r] ρ s〉 is WF by (9) and (WF-FRAME).
Case (D-CAST):

1) RS 〈D.mF ρ τ x=(C)y; s〉 by (D-CAST).
2) E(x) = SC, E(y) = S′ C′ by (T-METHOD).
3) F (this) = oρ

′

c by (WF-FRAME).
4) Let Sx = S↓D.m and Sy = S′ ↓D.m. Sx = Sy by (T-CAST).
5) F (y) = r and r <:Rρ′,ρ Sy C

′ by (WF-FRAME).
6) C′ <: C by (T-CAST-*).
7) We show that r <:Rρ′,ρ Sx C by (6) and case analysis on r:

a) If r = null then the relation holds.
b) Otherwise, let r = o′

ρ′′

c′ . We show by case analysis that o′ρ
′′

c′ <:Rρ′,ρ Sx C by case analysis on Sx:
i) If Sx = Sunk then the relation holds.

ii) If Sx = Scall. By (5) we know that ρ′′ = ρ and the relation holds.
iii) If Sx = Sthis. By (5) we know that ρ′′ = ρ′ and the relation holds.
iv) Otherwise, Sx is a named scope. By (5) we know that ρ = |parents(Sy)|. Since Sx = Sy , ρ = |parents(Sx)|

and the relation holds.
8) RS 〈D.mF [x 7→o′

ρ′′

c′] ρ s〉 by (7) and (WF-FRAME).
Case (D-SELECT):

1) RS 〈D.mF ρ τ x = y.fi; s〉 by (D-SELECT).
2) E(x) = SC

3) F (y) = oρ
′

c , F (this) = o′
ρ′′

c′ by (WF-FRAME).
4) 〈ρ′ cH[o 7→ C(r, ri, r

′)]〉 ∈ R by (WF-CONFIGURATION).
5) type(C.fi) = S′ C′ by (T-SELECT).
6) From (T-SELECT), C = C′.
7) ri <:Rρ′,∅ S′ C′ by (WF-FIELD).
8) If ri = null, ri <:Rρ′′,ρ S↓D.m C by definition of <:.
9) Otherwise, we show ri <:Rρ′′,ρ S↓D.m C by case analysis on S↓D.m:

a) If S↓D.m= Sunk, then by the definition of <:, the relation holds.
b) If S↓D.m= Sthis, by (T-SELECT-THIS), S′ = Sthis.

i) If S = Sthis, then ρ′ = ρ′′ by (WF-FRAME).
ii) If S = Scall, runsin(D.m) = Sthis by definition of ↓. E(y) = Scall C

′′ by (T-SELECT-THIS). Scall ↓D.m= Sthis.
By (WF-FRAME), ρ′ = ρ′′.

iii) Otherwise, this case does not apply.
c) If S ↓D.m= Scall, then S = Scall, runsin(D.m) = Scall, and E(y) = Scall C

′′. By (WF-FRAME), ρ′ = ρ. By
(WF-FIELD), ri = o′′

ρ
c and the relation holds.

d) Otherwise, by case analysis on S:
i) S = Sthis, then scope(D) is a named scope. By (T-SELECT-THIS), E(y) = Sthis C

′′ and S′ = Sthis. By
(WF-FRAME), ρ′ = ρ′′. By (WF-FIELD), ri = o′′

ρ′

c , so the relation holds.
ii) S = Scall, E(y) = Scall C

′′ and S′ = Sthis by (T-SELECT-THIS). By (WF-FRAME), ρ = ρ′ and ri = o′′
ρ
c by

(WF-FIELD). By definition of ↓, Scall ↓D.m= runsin(D.m)↓D. By (WF-FRAME), ρ = |parents(Scall ↓D.m)| and
the relation holds.

iii) S = Sunk, the case does not apply.
iv) Otherwise, S = S′ by (T-SELECT) and by definition of <:, the relation holds.

10) RS 〈D.mF [x 7→ ri] ρ s〉 is WF by (8), (9) and (WF-FRAME).
Case (D-UPDATE):

1) RS 〈D.mF ρ x.fi = y; s〉 by (D-UPDATE)
2) E(x) = SC, type(C.f) = S′ C′ by (T-WRITE)
3) F (x) = oρ

′

c , F (y) = r by (WF-FRAME).
4) We show that wff(ρ′, r,S′ C′, R) holds by case analysis on r:

a) If r = null, it is true by (WF-NULL-FIELD).
b) Otherwise, let r = o′

ρ′′

c′ . We show that wff(ρ′, o′
ρ′′

c′ ,S
′ C′, R) holds by case analysis on S′:

i) If S′ = Sthis, then wff holds if o′ρ
′′

c′ <:Rρ′,∅ Sthis C
′. In otherwords, it holds if ρ′′ = ρ′. E(y) = SC′ by

(T-WRITE-THIS). By (WF-FRAME), ρ′′ = ρ′ so wff holds.
ii) Otherwise, S′ is some named scope. E(y) = S′ C′ by (T-WRITE). For wff to hold, ρ′′ ≤ ρ′ and o′ρ

′′

c′ <:Rρ′,∅
S′ C′ must be true. By (T-FIELD), S is also a named scope. We show that ρ′′ ≤ ρ′ is true by case analysis
on S′:
A) If S = S′, then by (WF-FRAME) ρ′′ = ρ′.
B) Otherwise, S′ ∈ parents(S) by (T-FIELD). |parents(S)| is necessarily larger than |parents(S′)|. By

(WF-FRAME), ρ′ = |parents(S)| and ρ′′ = |parents(S′)|, therefore ρ′′ < ρ′.

By (WF-FRAME), o′ρ
′′

c′ <:Rρ′,ρ S
′ C′, therefore ρ′′ = |parents(S′)| by definition of <:. Thus, o′ρ

′′

c′ <:Rρ′,∅ S′ C′

also, so wff holds.
5) Let R = R′′〈ρ′ cH[o 7→ C(r ri r

′)]〉R′′′ and R′ = R′′〈ρ′ cH[o 7→ C(r o′
ρ′′

c′ r
′)]〉R′′′.

6) 〈ρ′ cH[o 7→ C(r o′
ρ′′

c′ r
′)]〉 is WF in R′ by (4) and (WF-REGION).

7) R′ S 〈D.mF ρ s〉 is WF by (6) and (WF-CONFIGURATION).
Case (D-NEW):

1) RS 〈D.mF ρ τ x = newC; s〉 by (D-NEW).
2) R = R′′〈ρ cH〉R′′′ by (D-NEW).
3) oρc <:R∅,ρ scope(C)C by case analysis on scope(C):

a) If scope(C) = Scall, then the relation holds.
b) If scope(C) = S, S = S′ by (T-NEW), where S′ = runsin(D.m)↓D. |parents(S)| = |parents(S′)| = ρ, so the

relation holds.

4) Let R′ = R′′〈ρ cH[o 7→ C(null)]〉R′′′.
5) 〈ρ cH[o 7→ C(null)]〉 is WF in R′ and nests in R′ by (3).
6) E(x) = SC by (WF-FRAME).
7) F (this) = o′

ρ′

c′ by (WF-FRAME).
8) oρc <:Rρ′,ρ S↓D.m C by case analysis on S↓D.m:

a) If S↓D.m= Sunk then the relation holds.
b) If S↓D.m= Scall then the relation holds.
c) If S↓D.m= Sthis then runsin(D.m)↓D= Sthis by (T-NEW). By (WF-FRAME) ρ = ρ′ and the relation holds.
d) Otherwise, ρ = |parents(S↓D.m)| by (WF-FRAME) and the relation holds.

9) S′ = S〈D.mF [x 7→ oρc] ρ s〉 is WF by (7) and (WF-FRAME).
10) R′ S′ is WF by (5), (9) and (WF-CONFIGURATION).

Case (D-CALL):
1) RS′′〈D.mF ρ τ x = y.m′(z); s〉 by (D-CALL).
2) E(y) = SC by (T-CALL).
3) mbody(C.m′) = τx x′; s

′ by (D-CALL).
4) F ′ = [x′ 7→ F (z)][this 7→ F (y)] by (D-CALL).
5) Let S′ = S′′〈D.mF ρ τ x = y.m′(z); s〉〈C.m′ F ′ ρ s′〉. S′ is WF in R if (WF-FRAME) holds for the top frame and

(WF-STACK) holds.
6) By (D-CALL), (WF-STACK) holds.
7) We show than (WF-FRAME) holds:

a) Let E′ be the typing environment obtained by type checking C.m′.
b) F (y) = oρ

′

c by (D-CALL).
c) We show that the frame is well-formed with respect to the designated allocation context by case analysis on

runsin(C.m′)↓C:
i) If runsin(C.m′)↓C= Sunk the case does not apply due to (T-METHOD).

ii) If runsin(C.m′) ↓C= Sthis then it must be the case that ρ = ρ′. In this case, runsin(C.m′) = Sthis and
scope(C) = Scall. By (T-CALL), S↓D.m= runsin(D.m)↓D. We show that ρ = ρ′ by case analysis on S↓D.m:
A) If S↓D.m= Sunk this case does not apply due to (T-METHOD).
B) If S↓D.m= Scall then ρ = ρ′ by definition of <:.
C) If S↓D.m= Sthis then runsin(D.m)↓D= Sthis and scope(D) = Scall by definition of↓. Let F (y) = o′′

ρ′′′

c′′ .
By (WF-FRAME), ρ = ρ′′′ and ρ′ = ρ′′′ so ρ = ρ′.

D) Otherwise S ↓D.m is a named scope and ρ = |parents(runsin(D.m) ↓D)|. Since S ↓D.m=
runsin(D.m)↓D and ρ′ = |parents(S↓D.m)|, ρ = ρ′.

iii) If runsin(C.m′)↓C= Scall then it is well-formed.
iv) Otherwise, it must be the case that ρ = |parents(runsin(C.m′) ↓C)|. Since runsin(C.m′) ↓C is a named

scope, either runsin(C.m′) is a named scope or runsin(C.m′) = Sthis and scope(C) is a named scope.
A) If runsin(C.m′) is a named scope, then runsin(C.m′) = runsin(D.m)↓D by (T-CALL). By (WF-FRAME),

ρ = |parents(runsin(D.m) ↓D)|. Therefore, ρ = |parents(runsin(C.m′))|. Since runsin(C.m′) is a
named scope, |parents(runsin(C.m′)) = |parents(runsin(C.m′)↓C)|, so the equality holds.

B) If runsin(C.m′) = Sthis and scope(C) is a named scope, S ↓D.m= runsin(D.m) ↓D. Since scope(C)
is a named scope, S ↓D.m= S = scope(C). By (WF-FRAME), ρ = |parents(runsin(D.m) ↓D)|. Also,
ρ = |parents(S)|. Because of the values of runsin(C.m′) and scope(C), runsin(C.m′)↓C= S and the
equality holds.

d) We show that each parameter x where E′(x) = S′ C′ (T-CALL) contributes to the well-formedness of the frame,
where z is the actual and E(z) = S′′ C′′:
i) If F (z) = null then F ′ = F ′′[x 7→ null] is WF by (WF-FRAME-NULL).

ii) Otherwise, let F (z) = o′
ρ′′

c′ and F ′(this) = oρ
′

c . F ′ = F ′′[x 7→ o′
ρ′′

c′] is WF by (WF-FRAME) if o′ρ
′′

c′ <:Rρ′,ρ
S′ ↓C.m′ C′. We show that this relation holds by case analysis on S′ ↓C.m′ :
A) If S′ ↓C.m′= Sunk, then by definition of <:, the relation holds.
B) If S′ ↓C.m′= Sthis, the definition holds if ρ′ = ρ′′. By definition of ↓, S′ = Sthis and scope(C′) = Scall.

By (T-CALL), S↓D.m= S′′ ↓D.m.
– If S↓D.m= Sunk then S = Sunk and the case does not apply due to (T-CALL).

– If S↓D.m= Sthis, let F (this) = o′′
ρ′′′

c′′ . By (WF-FRAME), ρ′′′ = ρ′ = ρ′′ so the relation holds.
– If S↓D.m= Scall, by (WF-FRAME), ρ = ρ′ = ρ′′ so the relation holds.
– Otherwise, by definition of <:, ρ′ = |parents(S↓D.m)| = ρ′′ and the relation holds.

C) If S′ ↓C.m′= Scall the relation holds if ρ = ρ′′. By definition of ↓, S′ = runsin(C.m′) = Scall. By
(T-CALL), Scall ↓D.m= S′′ ↓D.m and runsin(D.m)↓D= S′′ ↓D.m.
– If S′′ ↓D.m= Sunk the case does not apply due to (T-METHOD).
– If S′′ ↓D.m= Sthis, let F (this) = o′′

ρ′′′

c′′ . By (WF-FRAME), ρ′′ = ρ′′′. Also by (WF-FRAME), ρ = ρ′′′ so
the relation holds.

– If S′′ ↓D.m= Scall then by (WF-FRAME), ρ′′ = ρ and the relation holds.
– Otherwise by (WF-FRAME), ρ = |parents(S′′ ↓D.m)| = ρ′′ and the relation holds.

D) Otherwise the relation holds if ρ′′ = |parents(S′ ↓C.m′)|. We show that this is true by case analysis on
S′:
– If S′ = Sunk then the case does not apply.
– If S′ = Scall, either runsin(C.m′) is a named scope or runsin(C.m′) = Sthis and scope(C) is a

named scope. If runsin(C.m′) is a named scope, then by (T-CALL), runsin(C.m′) = S′′ ↓D.m. By
definition of ↓, we can infer that S′ ↓C.m′= runsin(C.m′) and also that S′ ↓C.m′= S′′ ↓D.m. Since
these are both named scopes, ρ′′ = |parents(S′ ↓C.m′)| and the relation holds.
Otherwise, S′ ↓D.m= S′′ ↓D.m by (T-CALL). Since scope(C) is a named scope and runsin(C.m′) =
Sthis, we can infer that S = scope(C). By (T-CALL), we know that S ↓D.m= S = runsin(D.m) ↓D.
Given this and that S′ = Scall, S′ ↓D.m must be concrete scope S. By (WF-FRAME), ρ′′ =
|parents(S′′ ↓D.m)| and ρ′′ = |parents(S)|. Since S′ = Scall, runsin(C.m′) = Sthis and scope(C) = S,
S = S′ ↓C.m′ . Substituting this into the previous equation shows that the relation holds.

– If S′ = Sthis then scope(C) is a named scope. By (T-CALL), S ↓D.m= S′′ ↓D.m; S must also be
a named scope, therefore S = S′′ ↓D.m. By (WF-FRAME), ρ′′ = |parents(S′′ ↓D.m)|. From this,
ρ′′ = |parents(S)|. Since S and scope(C) are named scopes, it must be the case that S = scope(C),
so ρ′′ = |parents(scope(C))|. By definition of ↓, Sthis ↓C.m′= scope(C) so the relation holds.

– Otherwise, S is a named scope and by (T-CALL), S = S′′ ↓D.m. By (WF-FRAME), ρ′′ = |parents(S′′ ↓D.m
)| = |parents(S)|. By definition of↓, since S is a named scope, S = S↓C.m′ ; therefore, |parents(S)| =
|parents(S↓C.m′)| and the relation holds.

8) RS′ is WF by (6), (7), and (WF-CONFIGURATION).
Case (D-IF-SAME-T):

1) RS 〈D.mF ρ (x
@
= y) x.fi = y; s〉 by (D-IF-SAME-T).

2) F (x) = oρ
′

c , F (y) = o′
ρ′

c by (WF-FRAME) and (D-IF-SAME-T).
3) E(y) = S′ C′, type(C.f) = Sthis C

′ by (T-IF-SAME).
4) o′

ρ′

c <:Rρ′,∅ Sthis C
′ by definition of <:.

5) Let R′ = R′′〈ρ′ cH[o 7→ C(r o′
ρ′

c r
′)]〉R′′′.

6) 〈ρ′ cH[o 7→ C(r o′
ρ′

c r
′)]〉 is WF in R′ by (WF-REGION).

7) R′ S 〈D.mF ρ s〉 is WF by (WF-CONFIGURATION).
Case (D-IF-SAME-F):

1) RS 〈D.mF ρ (x
@
= y) x.f = y; s〉 by (D-IF-SAME-F).

2) RS 〈D.mF ρ s〉 is WF by (WF-CONFIGURATION).
Case (D-ENTER):

1) RS 〈D.mF ρ τ y = x.enter(); s〉 by (D-ENTER).
2) R = R′′〈ρ cH〉〈ρ′ c′H ′〉R′′′ by (D-ENTER).
3) ρ′ = ρ+ 1 by (WF-CONFIGURATION).
4) E(x) = SC by (T-ENTER).
5) S′ = S 〈D.mF ρ τ y = x.enter(); s〉〈C.run [this 7→ F (x)] ρ+ 1 s′〉
6) S′ is WF in R if (WF-STACK-ENTER) and (WF-FRAME) hold.

a) Since there are no parameters, (WF-FRAME) holds if ρ + 1 is well-formed with respect to its alloca-
tion context. By (T-ENTER), runsin(C.run) must be a named scope, so (WF-FRAME) holds if ρ + 1 =
|parents(runsin(C.run))|. By (T-ENTER) we also know that runsin(D.m) ↓D is a named scope. By (WF-
FRAME), ρ = |parents(runsin(D.m)↓D)|. By (T-ENTER), parent(runsin(C.run)) = runsin(D.m)↓D, therefore

parents(runsin(C.run)) = {runsin(D.m) ↓D} ∪ parents(runsin(D.m) ↓D) and |parents(runsin(C.run))| =
|parents(runsin(D.m)↓D)|+ 1. Therefore, ρ+ 1 = |parents(runsin(C.run))| and (WF-FRAME) holds.

b) (WF-STACK-ENTER) holds by (5) and (6)(a).
7) We define R′ and show that R′ S′ is WF in R′ by case analysis on ρ+ 1:

a) If ρ+ 1 ∈ S, then R′ = R and R′ S′ is WF by (WF-CONFIGURATION).
b) If ρ + 1 6∈ S, then R′ = R′′〈ρ + 1 c + 1 ε〉R′′′. R′ S′ is WF if no region present on the call stack has an

object which points to another object in the region ρ+ 1. By (WF-REGION), we know that no object in a lower
region will point to an object in ρ+ 1. By (WF-STACK-ENTER), we know that if ρ+ 1 is not on the current call
stack, then no upper region is on the call stack either. Region ρ + 1 itself has an empty heap by (D-ENTER).
Therefore, by (WF-CONFIGURATION), R′ S′ is WF.

Case (D-EXEC-AREA):
1) RS 〈D.mF ρ τ y = x.execInArea(x′); s〉 by (D-EXEC-AREA)
2) F (x) = oρ

′

c′ , F (x′) = o′
ρ′′

c′′ by (D-EXEC-AREA)

3) S′ = S 〈D.mF ρ τ y = x.execInArea(x′); s〉〈C.run [this 7→ o′
ρ′′

c′′] ρ
′ s′〉

4) S′ is WF in R if (WF-STACK-EXEC-AREA) and (WF-FRAME) hold.
a) For (WF-FRAME) to hold, it must be the case that ρ′ = |parents(runsin(C.run))|. From (T-EXEC-AREA),

runsin(C.run) is the same named scope as the scope of x. By (WF-FRAME), ρ′ = |parents(runsin(C.run))|
so (WF-FRAME) holds for the new frame.

b) For (WF-STACK-EXEC-AREA) to hold, it must be the case that ρ′ ≤ ρ. By (T-EXEC-AREA), we know that
runsin(D.m) ↓D is a named scope and that runsin(C.run) is a named ancestor of it. By (WF-FRAME),
ρ = |parents(runsin(D.m) ↓D)| and ρ′ = |parents(runsin(C.run))|. Because of the parenting relation, we
know that ρ′ is strictly less than ρ so the relation holds.

5) RS′ is WF by (4) and (WF-CONFIGURATION).

Progress requires that if there exists an active thread in a well-formed configuration, this thread should be allowed to make
a step. We expand the definition of active(S). Let S = S′〈D.mF ρ s〉. As previously stated, active(S) holds if there are
more instructions to evaluate and the thread is not stuck on a null pointer exception. If S′ = [] and s = return y, then there
are no more instructions to evaluate. We enumerate the cases where the thread can be stuck on a null pointer exception:

1) s = τ x = y.fi and F (y) = null.
2) s = x.fi = y and F (x) = null.
3) s = τ x = y.m(z) and F (y) = null.
4) s = τ x = y.enter() and F (y) = null.
5) s = τ x = y.execInArea(z) and F (y) = null or F (z) = null.
6) s = (x

@
= y) x.f = y and F (x) = null or F (y) = null.

Theorem A.2: Progress. If R S is WF and active(S) then R S → R′ S′.
Proof:

We obtain R′; S′ by structural induction on s when S = S′′〈D.mF ρ s〉.
Case [s′; s′′]: Follows immediately by the induction hypothesis.
Case [τ x = y.fi]:

a) By (WF-FRAME), F (y) = r.
b) By (a), either r = null or r = oρc .

i) If r = null, then active(S) does not hold.
ii) Otherwise, by (WF-FRAME) y refers to a valid object C(r) and by (T-SELECT) there is an ri corresponding to

fi. Applying (D-SELECT) yields RS′〈D.mF ′ ρ s′〉.
Case [x.fi = y]: Similar to the previous case.
Case [τ x = (C)y]: Immediate by application of (D-CAST).
Case [τ x = new C]: Immediate by (WF-CONFIGURATION) and application of (D-NEW).
Case [τ x = y.m′(z)]:

a) If F (y) = null, active(S) does not hold.
b) Otherwise, since the program is well-typed, rtype(y) = C and C has a method m′. By (WF-CONFIGURATION) and

application of (D-CALL), we obtain RS′〈D.mF ρ τ x = y.m′(z)〉〈D′.m′ F ′ ρ s′〉.

Case [τ x = y.enter()]:
a) If F (y) = null, active(S) does not hold.
b) Otherwise, by (WF-CONFIGURATION), (T-ENTER) and application of (D-ENTER), we obtain R′ S′〈D.mF ρ τ x =

y.enter()〉〈D′.enterF ′ ρ′ s′〉.
Case [τ x = y.execInArea(z)]: Similar to the previous case.
Case [(x

@
= y) x.f = y]:

a) By (WF-FRAME), F (x) = r and F (y) = r′.
b) If r = null or r′ = null, active(S) does not hold.
c) Otherwise, let F (x) = oρc , F (y) = o′

ρ′

c′ .
i) If ρ = ρ′, application of (D-IF-SAME-T) yields R′ S′〈D.mF ρ s′〉.

ii) Otherwise, application of (D-IF-SAME-F) yields RS′〈D.mF ρ s′〉.
Case [s = return y]:

a) If S′ = [], then active(S) does not hold.
b) Otherwise, let S′ = S′′〈D′.m′ F ′ ρ τ x = y.m(z); s′〉. By applying (D-RETURN), we obtain RS′′〈D′.m′ F ′′ ρ s′〉.

Subtyping:

C <: C
C extends D

C <: D
C <: C′ C′ <: D

C <: D

Extends:

CT (C) = S classC extendsD{fd md}
C extendsD

Type lookup:

τ Sm(τx x){τz z; s; return y}∈methods(C)
type(C.m) = S, τx → τ

CT (C) = S class C extends D {fd md}
m is not defined in md
type(C.m) = type(D.m)

τ f∈fields(C)
type(C.f) = τ

CT (C) = S class C extends D {fd md}
f is not defined in fd

type(C.f) = type(D.f)

Method lookup:

τ m(τx x){τz z; s; return y} ∈ methods(C)
mbody(C.m) = (τx x; s; return y)

CT (C) = S class C extends D{fd md}

m not in md
mbody(C.m) = mbody(D.m)

Fields lookup:

fields(Object) = ε

CT (C) = S classC extendsD{fd md}

fields(D) = fd ′

fields(C) = fd ′ fd

Methods lookup:

methods(Object) = ε

CT (C) = S classC extendsD{fd md}

methods(D) = md ′ md ′′ = md ′ −md

methods(C) = md md ′′

Valid Method overriding:

type(C.m) = τ ′ → τ ′ implies
τ = τ ′ and τ = τ ′ S = runsin(C.m)

override(m,C, τ → τ,S)

Scope:

CT (C) = S classC extendsD{fd md}
scope(C) = S

τ Sm(τx x){. . .} ∈ methods(C) τ = S′ D
scope(C.m) = S′

τ Sm(τx x){. . .} ∈ methods(C)
runsin(C.m) = S

parent(S) = S′

parents(S) = {S′} ∪ parents(S′)

parents(Simm) = ∅

Figure 7: Auxiliary definitions.

