
Outline Introduction JavaScript Measurements Results Conclusions

Understanding the Dynamics of JavaScript

Sylvain Lebresne, Gregor Richards, Johan Östlund, Tobias
Wrigstad, Jan Vitek

Purdue University

July 6, 2009

1 / 28

Outline Introduction JavaScript Measurements Results Conclusions

1 Introduction

2 JavaScript

3 Measurements

4 Results

5 Conclusions

2 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Introduction

3 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Introduction — The Significance of JavaScript1

Language of “Web 2.0”

Dynamic language used for large, structured web programs

Supplanting Java applets, Flash

1JavaScript is also known as ECMAScript, JScript
4 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Introduction — Motivation

Understand real-world patterns used in dynamic languages

Do dynamic languages beget untypable code?

Potential for type analysis of JavaScript

What patterns in JavaScript could be recreated in a static
context

5 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Introduction — JavaScript and Types

Extremely dynamic, flexible object system

No static notion of type

But is the dynamicity used?

6 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript

7 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — The Language

Imperative, object-oriented

Minimalistic standard library

3rd-party libraries abstract the type system (Prototype.js,
jQuery, Ext)

8 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — Prototypes

Objects have a prototype, which is another object

Field lookup looks in the object itself, then its prototype

Prototype chains act like subtype relationships

9 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — Terminology

Constructors have a prototype field, the prototype of objects
created by the constructor: X.prototype is not the
prototype of X, but the prototype of objects created by X

The prototype of an object is accessible in many
implementations by the field proto

10 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — Prototypes Example

function List(v, n) { this.v = v; this.n = n; }
List.prototype.map = function(f) {

return new List(f(this.v),
this.n ? this.n.map(f) : null);

}
var l = new List(1, null);
delete(List.prototype.map);

11 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — Prototypes Example

function List(v, n) { this.v = v; this.n = n; }

List

List.prototype

prototype

List.prototype.map = function(f) {
return new List(f(this.v),

this.n ? this.n.map(f) : null);
}
var l = new List(1, null);
delete(List.prototype.map);

11 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — Prototypes Example

function List(v, n) { this.v = v; this.n = n; }
List.prototype.map = function(f) {

return new List(f(this.v),
this.n ? this.n.map(f) : null);

}

List

List.prototype

List.prototype.map
prototype

map

var l = new List(1, null);
delete(List.prototype.map);

11 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — Prototypes Example

function List(v, n) { this.v = v; this.n = n; }
List.prototype.map = function(f) {

return new List(f(this.v),
this.n ? this.n.map(f) : null);

}
var l = new List(1, null);

List

List.prototype

List.prototype.mapl

prototype

map

delete(List.prototype.map);

11 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — Prototypes Example

function List(v, n) { this.v = v; this.n = n; }
List.prototype.map = function(f) {

return new List(f(this.v),
this.n ? this.n.map(f) : null);

}
var l = new List(1, null);

List

List.prototype

List.prototype.map

l

prototype

mapmap

delete(List.prototype.map);

11 / 28

Outline Introduction JavaScript Measurements Results Conclusions

JavaScript — Prototypes Example

function List(v, n) { this.v = v; this.n = n; }
List.prototype.map = function(f) {

return new List(f(this.v),
this.n ? this.n.map(f) : null);

}
var l = new List(1, null);
delete(List.prototype.map);

List

List.prototype

l

prototype

11 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions

How often do prototypes change after first instantiation?

How often do prototype chains change after first instantiation?

How often are entirely new fields or methods added to live
objects?

What is the object-to-prototype ratio?

How complex/deep are prototype hierarchies?

Do JavaScript programs make use of type introspection?

What is the ratio of message sends and field updates?

12 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions

How often do prototypes change after first instantiation?

How often do prototype chains change after first instantiation?

How often are entirely new fields or methods added to live
objects?

What is the object-to-prototype ratio?

How complex/deep are prototype hierarchies?

Do JavaScript programs make use of type introspection?

What is the ratio of message sends and field updates?

12 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions

How often do prototypes change after first instantiation?

How often do prototype chains change after first instantiation?

How often are entirely new fields or methods added to live
objects?

What is the object-to-prototype ratio?

How complex/deep are prototype hierarchies?

Do JavaScript programs make use of type introspection?

What is the ratio of message sends and field updates?

12 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions

How often do prototypes change after first instantiation?

How often do prototype chains change after first instantiation?

How often are entirely new fields or methods added to live
objects?

What is the object-to-prototype ratio?

How complex/deep are prototype hierarchies?

Do JavaScript programs make use of type introspection?

What is the ratio of message sends and field updates?

12 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions

How often do prototypes change after first instantiation?

How often do prototype chains change after first instantiation?

How often are entirely new fields or methods added to live
objects?

What is the object-to-prototype ratio?

How complex/deep are prototype hierarchies?

Do JavaScript programs make use of type introspection?

What is the ratio of message sends and field updates?

12 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions

How often do prototypes change after first instantiation?

How often do prototype chains change after first instantiation?

How often are entirely new fields or methods added to live
objects?

What is the object-to-prototype ratio?

How complex/deep are prototype hierarchies?

Do JavaScript programs make use of type introspection?

What is the ratio of message sends and field updates?

12 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions

How often do prototypes change after first instantiation?

How often do prototype chains change after first instantiation?

How often are entirely new fields or methods added to live
objects?

What is the object-to-prototype ratio?

How complex/deep are prototype hierarchies?

Do JavaScript programs make use of type introspection?

What is the ratio of message sends and field updates?

12 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions

How often do prototypes change after first instantiation?

How often do prototype chains change after first instantiation?

How often are entirely new fields or methods added to live
objects?

What is the object-to-prototype ratio?

How complex/deep are prototype hierarchies?

Do JavaScript programs make use of type introspection?

What is the ratio of message sends and field updates?

12 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Measurements

13 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Measurements — Dirtiness

Primary measurement is “dirtiness” of objects

Dirtying actions:

Addition or deletion of a property
Update of a method
Update of the prototype field

Intuition:

“Clean” objects are nearly statically typable
“Dirty” objects use dynamic features

Update of a field explicitly ignored

14 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Measurements — Dirtiness

Primary measurement is “dirtiness” of objects

Dirtying actions:

Addition or deletion of a property
Update of a method
Update of the prototype field

Intuition:

“Clean” objects are nearly statically typable
“Dirty” objects use dynamic features

Update of a field explicitly ignored

14 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Measurements — Dirtiness

Primary measurement is “dirtiness” of objects

Dirtying actions:

Addition or deletion of a property
Update of a method
Update of the prototype field

Intuition:

“Clean” objects are nearly statically typable
“Dirty” objects use dynamic features

Update of a field explicitly ignored

14 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Measurements — Test Cases

SunSpider tests

Popular for benchmarking JavaScript implementations
“(...) avoids microbenchmarks, and tries to focus on the kinds
of actual problems developers solve with JavaScript today,
(...)”

Real web pages

Amazon, Basecamp, Facebook, Gmail, LivelyKernel, NASA
Random walk (normal web surfing activity)

15 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Objects

Results broken down by objects, in these categories:

Regular objects: objects created by new (and array literals.)
Constructors: functions used to create regular objects.
Functions: functions that are not used as a constructor.
Prototypes: objects created as prototypes of functions.

16 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Object Dirtiness

Regular Objects Prototypes Constructors Other Functions Objects

3d-cube 20491 (0.02%) 23 (0%) 1 (0%) 14 (0%) 20529 (0.02%)
3d-raytrace 10742 (0.61%) 36 (0%) 3 (0%) 25 (0%) 10806 (0.61%)
binary-trees 42072 (0%) 11 (0%) 1 (0%) 2 (0%) 42086 (0%)
v8-crypto 1076 (44%) 140 (2.86%) 5 (20%) 127 (0%) 1348 (35.5%)

v8-deltablue 22854 (0%) 87 (1.15%) 15 (73.33%) 64 (3.12%) 23020 (0.07%)
v8-raytrace 399685 (0.02%) 361 (1.94%) 18 (100%) 335 (5.37%) 400399 (0.03%)
v8-richards 3000 (0%) 46 (0%) 7 (0%) 31 (0%) 3084 (0%)

amazon 31589 (21.6%) 20909 (0%) 1 (100%) 20750 (4.9%) 73249 (10.7%)
basecamp 4381 (5.2%) 1796 (0.4%) 0 (0%) 1663 (0%) 7840 (3%)
facebook 72231 (28.5%) 22692 (1.4%) 167 (69.5%) 22407 (13.1%) 117497 (20.4%)

gmail 55833 (24%) 11140 (0.06%) 1899 (98.8%) 8338 (40.4%) 77210 (24.1%)
livelykernel 316717 (7.1%) 70036 (0%) 1 (0%) 69845 (0.01%) 456599 (4.9%)

nasa 93989 (3.1%) 13853 (2.7%) 24 (4.2%) 13352 (0.06%) 121218 (2.7%)
random 47921 (16.4%) 12680 (0.15%) 189 (55%) 12338 (0.4%) 73128 (11%)

Regular object dirtiness usually due to “optional” fields or
object literals

v8-crypto: bignums constructor does not always create some
fields; created instead by later functions such as fromInt
v8-raytrace: optional shader function added to some (but not
all) objects

17 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Object Dirtiness

Regular Objects Prototypes Constructors Other Functions Objects

3d-cube 20491 (0.02%) 23 (0%) 1 (0%) 14 (0%) 20529 (0.02%)
3d-raytrace 10742 (0.61%) 36 (0%) 3 (0%) 25 (0%) 10806 (0.61%)
binary-trees 42072 (0%) 11 (0%) 1 (0%) 2 (0%) 42086 (0%)
v8-crypto 1076 (44%) 140 (2.86%) 5 (20%) 127 (0%) 1348 (35.5%)

v8-deltablue 22854 (0%) 87 (1.15%) 15 (73.33%) 64 (3.12%) 23020 (0.07%)
v8-raytrace 399685 (0.02%) 361 (1.94%) 18 (100%) 335 (5.37%) 400399 (0.03%)
v8-richards 3000 (0%) 46 (0%) 7 (0%) 31 (0%) 3084 (0%)

amazon 31589 (21.6%) 20909 (0%) 1 (100%) 20750 (4.9%) 73249 (10.7%)
basecamp 4381 (5.2%) 1796 (0.4%) 0 (0%) 1663 (0%) 7840 (3%)
facebook 72231 (28.5%) 22692 (1.4%) 167 (69.5%) 22407 (13.1%) 117497 (20.4%)

gmail 55833 (24%) 11140 (0.06%) 1899 (98.8%) 8338 (40.4%) 77210 (24.1%)
livelykernel 316717 (7.1%) 70036 (0%) 1 (0%) 69845 (0.01%) 456599 (4.9%)

nasa 93989 (3.1%) 13853 (2.7%) 24 (4.2%) 13352 (0.06%) 121218 (2.7%)
random 47921 (16.4%) 12680 (0.15%) 189 (55%) 12338 (0.4%) 73128 (11%)

Prototypes are dirty if modified after the first instance is
created

Adding fields to Object.prototype and String.prototype
v8-crypto: “static” fields zero and one

18 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Object Dirtiness

function BigNum(val) { ... }
BigNum.ZERO = new BigNum(0);
BigNum.ONE = new BigNum(1);

BigNum.prototype.add = function(to) { ... }

function BigNum(val) { ... }
BigNum.prototype.add = function(to) { ... }
BigNum.ZERO = new BigNum(0);
BigNum.ONE = new BigNum(1);

19 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Object Dirtiness

function BigNum(val) { ... }
BigNum.ZERO = new BigNum(0);
BigNum.ONE = new BigNum(1);
BigNum.prototype.add = function(to) { ... }

function BigNum(val) { ... }
BigNum.prototype.add = function(to) { ... }
BigNum.ZERO = new BigNum(0);
BigNum.ONE = new BigNum(1);

19 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Object Dirtiness

function BigNum(val) { ... }
BigNum.ZERO = new BigNum(0);
BigNum.ONE = new BigNum(1);
BigNum.prototype.add = function(to) { ... }

function BigNum(val) { ... }
BigNum.prototype.add = function(to) { ... }
BigNum.ZERO = new BigNum(0);
BigNum.ONE = new BigNum(1);

19 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Object Dirtiness

Regular Objects Prototypes Constructors Other Functions Objects

3d-cube 20491 (0.02%) 23 (0%) 1 (0%) 14 (0%) 20529 (0.02%)
3d-raytrace 10742 (0.61%) 36 (0%) 3 (0%) 25 (0%) 10806 (0.61%)
binary-trees 42072 (0%) 11 (0%) 1 (0%) 2 (0%) 42086 (0%)
v8-crypto 1076 (44%) 140 (2.86%) 5 (20%) 127 (0%) 1348 (35.5%)

v8-deltablue 22854 (0%) 87 (1.15%) 15 (73.33%) 64 (3.12%) 23020 (0.07%)
v8-raytrace 399685 (0.02%) 361 (1.94%) 18 (100%) 335 (5.37%) 400399 (0.03%)
v8-richards 3000 (0%) 46 (0%) 7 (0%) 31 (0%) 3084 (0%)

amazon 31589 (21.6%) 20909 (0%) 1 (100%) 20750 (4.9%) 73249 (10.7%)
basecamp 4381 (5.2%) 1796 (0.4%) 0 (0%) 1663 (0%) 7840 (3%)
facebook 72231 (28.5%) 22692 (1.4%) 167 (69.5%) 22407 (13.1%) 117497 (20.4%)

gmail 55833 (24%) 11140 (0.06%) 1899 (98.8%) 8338 (40.4%) 77210 (24.1%)
livelykernel 316717 (7.1%) 70036 (0%) 1 (0%) 69845 (0.01%) 456599 (4.9%)

nasa 93989 (3.1%) 13853 (2.7%) 24 (4.2%) 13352 (0.06%) 121218 (2.7%)
random 47921 (16.4%) 12680 (0.15%) 189 (55%) 12338 (0.4%) 73128 (11%)

Emulation of class-based behavior common, further
investigation needed

20 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Constructors and Functions

Object.prototype.inherits = function(shuper) {
function Inheriter() {}
Inheriter.prototype = shuper.prototype;
this.prototype = new Inheriter();
this.superConstructor = shuper;

}
function List(...) = { ... }
function ColorList(...) = {

ColorList.superConstructor.call(this, ...);
...

}
ColorList.inherits(List);

21 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Dirtiness Sources

Results broken down by source of dirtiness

Method addition
Method update
Field addition
Prototype update
Deletion

22 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Dirtiness Sources

 3d-cube

 3d-raytrace

 binary-trees

 v8-crypto

 v8-deltablue

 v8-raytrace

 v8-richards

amazon

basecamp

facebook

gmail

livelykernel

nasa

random

0 1000 2000 3000 4000 5000 6000 7000

Deletions

23 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Dirtiness Sources

 3d-cube

 3d-raytrace

 binary-trees

 v8-crypto

 v8-deltablue

 v8-raytrace

 v8-richards

amazon

basecamp

facebook

gmail

livelykernel

nasa

random

0 5000 10000 15000 20000 25000

Meth. add. Field add.

24 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Dirtiness Sources

Meth. add. Meth. upd. Field add. Proto. upd. Deletions Avg.
Obj./Tot. Obj./Tot. Obj./Tot. Obj./Tot. Obj./Tot. (Med.)

3d-cube 0/0 0/0 16/4 0/0 0/0 4.0 (2)
3d-raytrace 2/2 0/0 124/64 0/0 0/0 1.9 (2)
binary-trees 0/0 0/0 0/0 0/0 0/0 0.0 (0)
v8-crypto 61/4 0/0 950/475 0/0 0/0 2.1 (2)

v8-deltablue 11/8 0/0 10/2 12/12 0/0 2.2 (2)
v8-raytrace 587/77 10/5 180/36 33/33 0/0 6.4 (2)
v8-richards 0/0 0/0 0/0 0/0 0/0 0.0 (0)

amazon 2160/4198 39/67 7050/59769 2/2 1174/1896 8.4 (2)
basecamp 112/819 7/7 142/1883 0/0 0/0 11.6 (2)
facebook 5212/16432 256/648 19787/84912 72/72 352/727 4.3 (2)

gmail 2123/4258 68/180 10982/35783 1896/1896 6001/19972 3.3 (2)
livelykernel 21605/42346 0/0 15555/16584 0/0 0/0 2.6 (2)

nasa 421/2045 361/361 2621/6127 7/7 1/3 2.6 (1)
random 1885/4037 24/1563 6188/48988 121/121 69/173 6.8 (2)

In Gmail, 1896 prototype field updates, 1899 updates to
constructors; strongly suggests class emulation

25 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Results — Other Results

Ratio of message sends to field updates

The vast majority of programs have a low ratio; used
imperatively, not functionally

Length of prototype chains

Max length 10 (gmail)
SunSpider’s chains were all short (≤ 4)
Real programs had greater max length (all ≥ 6)
All programs had ≈ 2 average

Calls to typeof
Rare in SunSpider, common in real programs

26 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Conclusions and Future Work

Certain dynamic actions are common in JavaScript

Many can be avoided by identifying patterns and refactoring

Potential exists for static type analysis of JavaScript programs

27 / 28

Outline Introduction JavaScript Measurements Results Conclusions

Questions?

28 / 28

