Azul' Experiences with g
Hardware Transactlonal Memory

Dr. Cliff Click
Chief JVM Architect & Distinguished Engineer
blogs.azulsystems.com/cliff

Azul Systems SYSTEMS
January 31, 2009




Azul Systems “

e Designs our own chips (fab'ed by TSMC)

Builds our own systems

Targeted for running business Java

Large core count - 54 cores per die
Up to 16 die are cache-coherent
Very weak memory model meets Java spec w/fences

“UMA” - Flat medium memory speeds
Business Java is irregular computation
Have supercomputer-level bandwidth

Modest per-cpu caches
54*(16K+16K) = 1.728Meg fast L1 cache
6*2M = 12M L2 cache
Groups of 9 CPUs share L2



Azul Systems “

e Cores are classic in-order 64-bit 3-address RISCs

Each core can sustain 2 cache-missing ops
Plus each L2 can sustain 24 prefetches
2300+ outstanding memory references at any time

Some special ops for Java
Read & Write barriers for GC
Array addressing and range checks
Fast virtual calls

But core clock rate not real high

So task-level parallelism is the name of the game



The Bottleneck is not the Platform “

 JVM scales linear to 864 CPUs

Have bandwidth to feed them all as well

 Lite micro-kernel OS
Easily supports >100K runnable threads

 Heaps >500Gig

Sustained allocation rates >40Gig/sec

How do we enable users to write programs
with hundreds of runnable threads?



The Bottleneck is not the Platform “

e “Big Thread” programs tend to fall into 2 main camps
Parallel data “science” (or really “financial modeling”) apps
Web-tier app-server thread-pool + worklist apps

Data-parallel apps tend to scale nice
After a (short) round of tweaking
Although JDK concurrency libs often an issue at > 64 cpus.

Web-tier apps are more common
And scale less well
Internal locking of shared structures
e.g. legacy uses of Hashtable

Frequently see <10 cpus without tweaking
After app tuning see frequently see <50 cpus



Legacy Locking is an Issue “

e Lots of Old Java out there
e 3rd-party apps being linked in

Source not available (company defunct?)
* Intended to run on 1 cpu (and maybe now 2 cpu) machines

* But lots of the locking is useless
Data contention is rare
At least on the users'data
Lock contention is far more common
e.g. Hashtable
But also shared large sync'd HashMaps
Lots of other Container classes



No “atomic” keyword “

* No desire to enter the “language wars”

Costumers want old code to “just run faster”
Dusty-deck acceleration

So Azul built TM support to accelerate Java locks
Speed up “synchronized” keyword
No “atomic” keyword

Uncontended locks are by far the most common
And uncontended locks already fast
Azul's CAS and Fences can “hit in cache”

Contended locks already fast as can be
Lite microkernel OS; very fast context switch times



Hardware TM Support “

e Built in our first chips

Leverage L1
Extra bits per cache-line
“Speculatively-read”,

, 'speculatively-written”
No changes to L2 at all
No other CPU is aware that this CPU is attempting a XTN

SPECULATE instruction

Flips CPU speculate mode; starts tracking reads & writes

ABORT instruction, or abort on eviction from L1
Mark spec-lines as “invalid”

COMMIT instruction

Clear spec-bits



Hardware TM Support “

 No hardware register rollback
Software responsible for all recovery on Abort
Possible because only accelerating Java locks

Limited by size of L1

Limited by associativity of L1

And L2, since shared inclusive L2

No graceful fallback on Abort
No attempt at STM support

No abort on TLB miss or function call or ...

Either an XTN fits in cache or it doesn't
Software heuristics determine when to use the HTM



Software TM Support “

e Just “synchronized” keywords

e HotSpot “thin locks™ for uncontended locks
Just use the fast CAS, no HTM

* Contended locks attempt HTM

Success-time/fail-time ratios kept
After some initial attempts

If ratio is bad, switch to OS lock
Periodically re-measure success/fail ratio



EXxperiences “

 Some apps get 2x speedup (e.g. Tradeb)
 Most get <10% (e.g. Calypso)

 Lots of teething problems with heuristic
Easy to get 10-20% slowdown for constant fail/retry

e Currently turned on always & shipping
e Always see a handful of locks using the HTM
« But rarely the “right” locks to get more CPUs busy

 Failure is almost always to due conflict
and not capacity.



XTN Size ef

e Limited by size & associativity of L1 & L2
e But this appears to be generous:

« XTN's of many thousands of instructions happen
Which include 100's of cache-hitting loads

* Most interesting XTNs fail for conflict
and not capacity.



Issues “

e Users don't write “TM friendly” code

e Neither do library writers:
e.g. “modcount” - bumped per mod to Hashtable
Large shared Hashtable, most updates are unrelated
Update itself works well in the HTM
But updates to shared “modcount” blow out HTM
“modcount” is mostly unused & useless field update

 Same issue with many performance counters
Locked writes to a shared variable kills TM

 Many times a small rewrite makes HTM possible
But blows the “dusty deck” goal



Issues “

* Hard part is to get customer past “dusty deck” thinking

Once a code rewrite is “on the table”
Customer goes whole-hog
And rewrites w/fine-grained locking

Generally only need to “crack” a few locks

Generally fairly easy, once exact locks are known

Code then scales on all platforms, not just Azul

Locks have known performance issues
Better than unknown TM rollback/retry issues



Hardware Abort is “Too Good” “

e Hardware abort rolls back ALL memory writes
No “breadcrumbs” on failure

e Hard to record fail reason!
Must pass fail code out in a reserved register
Even on success path

e First CPUs did not report hardware failure
Cannot tell capacity issues from associativity issues from...

e Failure reason is required for a robust heuristic



Summary “

 Modest gains
* Rewrites of “dumb” code could help a lot

* Azul did some of this for common JDK pieces
Just too much of it Out There

e Future work:

Robust customer friendly tool for finding XTN
“unfriendly” code

Let customer solve the “why does HTM fail?”

http://blogs.azulsystems.com/cliff/




#1 Platform for
Business Critical Java™

WWW.AZULSYSTEMS.COM

E ERA OF UNBOUND EOMPUTE IS NOW

Thank You




	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

