
A Lock-Free Hash Table

2009 Transaction Memory Workshop

Azul's Experiences with
Hardware Transactional Memory

Dr. Cliff Click
Chief JVM Architect & Distinguished Engineer
blogs.azulsystems.com/cliff
Azul Systems
January 31, 2009

2
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Azul Systems

• Designs our own chips (fab'ed by TSMC)
• Builds our own systems
• Targeted for running business Java
• Large core count - 54 cores per die

─ Up to 16 die are cache-coherent
─ Very weak memory model meets Java spec w/fences

• “UMA” - Flat medium memory speeds
─ Business Java is irregular computation
─ Have supercomputer-level bandwidth

• Modest per-cpu caches
─ 54*(16K+16K) = 1.728Meg fast L1 cache
─ 6*2M = 12M L2 cache
─ Groups of 9 CPUs share L2

3
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Azul Systems

• Cores are classic in-order 64-bit 3-address RISCs
• Each core can sustain 2 cache-missing ops

─ Plus each L2 can sustain 24 prefetches
─ 2300+ outstanding memory references at any time

• Some special ops for Java
─ Read & Write barriers for GC
─ Array addressing and range checks
─ Fast virtual calls

• But core clock rate not real high
• So task-level parallelism is the name of the game

4
| ©2008 Azul Systems, Inc.

www.azulsystems.com

The Bottleneck is not the Platform

• JVM scales linear to 864 CPUs
─ Have bandwidth to feed them all as well

• Lite micro-kernel OS
─ Easily supports >100K runnable threads

• Heaps >500Gig
─ Sustained allocation rates >40Gig/sec

How do we enable users to write programs
with hundreds of runnable threads?

5
| ©2008 Azul Systems, Inc.

www.azulsystems.com

The Bottleneck is not the Platform

• “Big Thread” programs tend to fall into 2 main camps
─ Parallel data “science” (or really “financial modeling”) apps
─ Web-tier app-server thread-pool + worklist apps

• Data-parallel apps tend to scale nice
─ After a (short) round of tweaking
─ Although JDK concurrency libs often an issue at > 64 cpus.

• Web-tier apps are more common
─ And scale less well
─ Internal locking of shared structures
─ e.g. legacy uses of Hashtable

• Frequently see <10 cpus without tweaking
• After app tuning see frequently see <50 cpus

6
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Legacy Locking is an Issue

• Lots of Old Java out there
• 3rd-party apps being linked in

─ Source not available (company defunct?)

• Intended to run on 1 cpu (and maybe now 2 cpu) machines
• But lots of the locking is useless

─ Data contention is rare
─ At least on the users' data
─ Lock contention is far more common
─ e.g. Hashtable
─ But also shared large sync'd HashMaps
─ Lots of other Container classes

7
| ©2008 Azul Systems, Inc.

www.azulsystems.com

No “atomic” keyword

• No desire to enter the “language wars”
• Costumers want old code to “just run faster”

─ Dusty-deck acceleration

• So Azul built TM support to accelerate Java locks
─ Speed up “synchronized” keyword
─ No “atomic” keyword

• Uncontended locks are by far the most common
─ And uncontended locks already fast
─ Azul's CAS and Fences can “hit in cache”

• Contended locks already fast as can be
─ Lite microkernel OS; very fast context switch times

8
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Hardware TM Support

• Built in our first chips
• Leverage L1

─ Extra bits per cache-line
─ “Speculatively-read”, “speculatively-written”

• No changes to L2 at all
─ No other CPU is aware that this CPU is attempting a XTN

• SPECULATE instruction
─ Flips CPU speculate mode; starts tracking reads & writes

• ABORT instruction, or abort on eviction from L1
─ Mark spec-lines as “invalid”

• COMMIT instruction
─ Clear spec-bits

9
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Hardware TM Support

• No hardware register rollback
─ Software responsible for all recovery on Abort
─ Possible because only accelerating Java locks

• Limited by size of L1
• Limited by associativity of L1

─ And L2, since shared inclusive L2

• No graceful fallback on Abort
─ No attempt at STM support

• No abort on TLB miss or function call or ...
• Either an XTN fits in cache or it doesn't
• Software heuristics determine when to use the HTM

10
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Software TM Support

• Just “synchronized” keywords
• HotSpot “thin locks” for uncontended locks

─ Just use the fast CAS, no HTM

• Contended locks attempt HTM
─ Success-time/fail-time ratios kept
─ After some initial attempts

─ If ratio is bad, switch to OS lock
─ Periodically re-measure success/fail ratio

11
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Experiences

• Some apps get 2x speedup (e.g. Trade6)
• Most get <10% (e.g. Calypso)
• Lots of teething problems with heuristic

─ Easy to get 10-20% slowdown for constant fail/retry

• Currently turned on always & shipping
• Always see a handful of locks using the HTM
• But rarely the “right” locks to get more CPUs busy

• Failure is almost always to due conflict
and not capacity.

12
| ©2008 Azul Systems, Inc.

www.azulsystems.com

XTN Size

• Limited by size & associativity of L1 & L2
• But this appears to be generous:
• XTN's of many thousands of instructions happen

─ Which include 100's of cache-hitting loads

• Most interesting XTNs fail for conflict
and not capacity.

13
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Issues

• Users don't write “TM friendly” code
• Neither do library writers:

─ e.g. “modcount” - bumped per mod to Hashtable
─ Large shared Hashtable, most updates are unrelated
─ Update itself works well in the HTM
─ But updates to shared “modcount” blow out HTM
─ “modcount” is mostly unused & useless field update

• Same issue with many performance counters
─ Locked writes to a shared variable kills TM

• Many times a small rewrite makes HTM possible
─ But blows the “dusty deck” goal

14
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Issues

• Hard part is to get customer past “dusty deck” thinking
• Once a code rewrite is “on the table”

─ Customer goes whole-hog
─ And rewrites w/fine-grained locking

• Generally only need to “crack” a few locks
• Generally fairly easy, once exact locks are known
• Code then scales on all platforms, not just Azul
• Locks have known performance issues

─ Better than unknown TM rollback/retry issues

15
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Hardware Abort is “Too Good”

• Hardware abort rolls back ALL memory writes
─ No “breadcrumbs” on failure

• Hard to record fail reason!
─ Must pass fail code out in a reserved register
─ Even on success path

• First CPUs did not report hardware failure
─ Cannot tell capacity issues from associativity issues from...

• Failure reason is required for a robust heuristic

16
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Summary

http://blogs.azulsystems.com/cliff/

• Modest gains
• Rewrites of “dumb” code could help a lot
• Azul did some of this for common JDK pieces

─ Just too much of it Out There
• Future work:

─ Robust customer friendly tool for finding XTN
“unfriendly” code

─ Let customer solve the “why does HTM fail?”

Thank You

WWW.AZULSYSTEMS.COM

#1 Platform for
Business Critical Java™

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

