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Abstract. Software transactional memory (STM)
has emerged as a promising technique for facili-
tating concurrent programming to exploit the po-
tential of multicore machines in a programmer-
friendly manner. One of the striking features of
STM is its ability to support composability of
transactions through nesting, i.e., smaller sub-
transactions can be glued together to form larger
transactions. So far, a number of protocols have
been proposed for supporting non-nested transac-
tions in STM. The work related to nested transac-
tions support either serial execution of subtrans-
actions (i.e. no nested parallelism) or allow only
child-level parallelism in which the parent is not
allowed to execute its operations while it has ac-
tive children subtransactions.

In this paper, we present an STM protocol
(HParSTM) for closed nested transactions. Some
of the key features of this protocol are (1) par-
allelism between the sibling subtransactions as
well as between the parent and the child transac-
tions, (2) satisfying opacity property, (3) aborting
a (sub)transaction only when it conflicts with some
other live (sub)transaction (progressiveness prop-
erty), (4) use of visible reads, (5) flexibility for read
only nested subtransactions, (6) purely optimistic
approach, and (7) hierarchical design.
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1 Introduction

Software transactional memory. To complement the rapid
growth in the development of multicore machines, a
paradigm shift in programming practice, from sequential
programming to concurrent programming, is being observed.
To this end, software transactional memory (STM) aims at
providing a mechanism for handling low-level concurrency
control for accessing shared objects in a multi-threaded en-
vironment in such a way that the programmers can write
programs without having to worry about the underlying
concurrency management. Using STM system, a program-

mer delimits the regions of a program that must execute
atomically. Each atomic region constitutes a transaction.

Opacity and progressiveness. The notion of opacity, in-
troduced and formalized by Guerraoui et. al. [11], is a widely
accepted correctness criterion for the concurrent execution
of transactions in STM systems [1, 9, 11]. Opacity requires
that all transactions (including the aborted ones) access con-
sistent states. Another property desirable in STM systems is
progressiveness [1]. An STM system is progressive if it force-
fully aborts a transaction only when there is a time τ at
which conflicts with another concurrent transaction that is
not committed or aborted by time τ ; we say that two trans-
actions conflict if they access some common shared object,
and at least one writes the object [11].

Transaction tree and closed nested transactions. One of
the unique features of STM is the composability of the
transactions. In other words, a set of smaller transactions
can be combined to form a larger transaction through nest-
ing. The different types of nesting are (a) flat nesting (b)
closed nesting, and (c) open nesting. In this paper, we only
deal with closed nested transaction. Nested transactions are
created when an atomic region is created inside an outer
atomic region. The execution of nested subtransactions can
be conceptually represented by a dynamic tree of active sub-
transactions, called transaction tree [8], in which the trans-
actions are related by parent-child relationship. The trans-
action at the topmost level, that has no parent, is referred
to as root transaction. When a root transaction commits,
all the changes made to the globally shared objects by the
root transaction become visible to all other transactions ex-
ecuting concurrently in the system. The commit of a closed
nested subtransaction is only local to its parent, i.e., in-
stead of making actual changes to the globally shared data,
it merges its read and write sets with those of its parent
upon committing. The abort of a closed nested subtransac-
tion does not affect the state of its ancestor(s).

Contribution of the paper. Most of the work in STM
so far has been carried out for normal (non-nested) trans-
actions. Those that consider nested transactions support
only serial execution of nested subtransactions [6, 7]. Recent
works [2, 3, 4, 5, 10] go further to support parallelism at the
child-level, under the restriction that the parent transaction
does not execute while it has active children. So far, no pa-
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per (to the best of our knowledge) allows parent transaction
to execute concurrently with its children transactions.

In this paper, we present an STM protocol (HParSTM),
for closed nested transactions, that offers full parallelism
at all levels i.e. parallelism between sibling transactions as
well as between the parent and the children transactions.
The benefit of parent/child parallelism is that it can reduce
the branching in the transaction tree by distributing tasks,
independent ones in particular, at the parent and child lev-
els. Moreover, all the nodes in the transaction tree can now
participate in active computation. This way, we obtain a
smaller transaction tree, and thereby reduce the depth of
nesting needed.

We build upon the protocol proposed in [1] (described in
Section 3.1). The choice of this protocol as a base for our al-
gorithm is motivated by its following features: (1) simplicity
of idea, (2) satisfying opacity and progressiveness properties,
and (3) formal proof of correctness.

Roadmap. The paper is made up of 8 sections. Section 2
describes the base system model, and discusses the problem
specification. We first offer an insight into the design of the
Protocol (HParSTM) by providing an overview in Section
3, followed by the discussion of the complexity involved in
handling the contention management in Section 4. In Section
5, we present the actual protocol (pseudocode and descrip-
tion). In Section 6, we briefly discuss the correctness of the
protocol. In Section 7, we discuss the related research works,
and Section 8 concludes the paper.

2 System Model

Our system is similar to the one used in [1]. The base com-
putational model consists of processes, base objects, locks
and atomic registers. There are n asynchronous sequen-
tial processes (i.e. threads) denoted p1, ..., pn that cooperate
through base read/write atomic registers and locks. The lo-
cal as well as global copies of shared objects (e.g., the base
object x) are protected by individual locks. Each process is
made of up a sequence of transactions along with some code
to manage these transactions, and has its own memory. The
processes issue transactions one at a time.

A transaction is a sequence of read and write operations
that can examine (read) and modify (write), respectively,
the state of the base objects. It consists of a sequence of
events that are an operation invocation, an operation re-
sponse, a subtransaction invocation and response, a commit
invocation, a commit response, and an abort event. An op-
eration is considered terminated if its response event has
occurred. Similarly, a transaction is considered completed if
its commit response or abort event has occurred.

Further, each transaction satisfies the following con-
straints: (1) a transaction performs one operation at a time,
and (2) a composite transaction must wait until all of its (ac-

tive) children have completed before entering the validation
for its commit.

The set of transactions is denoted by T . The set of ob-
jects is denoted by X and the set of possible values associ-
ated with them is V . A local copy of an object x (or a set
s) associated with a transaction t is denoted by t.x (t.s) to
avoid ambiguity. Likewise, a field b associated with an ob-
ject a is represented as a.b. Further, we sometimes use the
notation t.foo(), instead of foot(), for referring to a method
foo() associated with a transaction t.

3 Design Overview of HParSTM

As stated earlier, the protocol presented in this paper builds
upon the base protocol proposed in [1] for non-nested trans-
actions. We provide a brief outline of that protocol. (Capi-
tal letters have been used in [1] to denote transactions and
shared objects).

3.1 Overview of the base protocol [1] by D. Imbs
and M. Raynal

—————————————————————————-
Protocol 1:
—————————————————————————-
operation readt (x):
(01) if (t.x not exists) then
(02) allocate local space for t.x;
(03) t.lrs← t.lrs ∪ {x};
(04) lock tψ.x; t.x← tψ.x; tψ.x.rs← tψ.x.rs ∪ {t};

unlock tψ.x;
(05) if (t ∈ tψ.x.fbd ) then return (abort) end if
(06) end if;
(07) return(value of t.x)

operation writet(x, v):
(08) t.read only ← false;
(09) if (t.x not exists) then allocate local space for t.x end
if;
(10) t.x← v;
(11) t.lws← t.lws ∪ {x};

operation try to committ ():
(12) if (t.read only )
(13) then return(commit);
(14) else lock all the objects in t.lrs ∪ t.lws ;
(15) if (t ∈ tψ.ow) then release all the locks; return(abort)

end if;
(16) for each x ∈ t.lws do tψ.x← t.x end for;
(17) tψ.ow ← tψ.ow ∪ (∪x∈t.lwstψ.x.rs);
(18) for each x ∈ t.lws do tψ.x.fbd← tψ.ow; tψ.x.rs← ∅;

end for;
(19) release all the locks;
(20) return(commit)
(21) end if
—————————————————————————–
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Protocol 1 uses single shared copy of each base object x.
Each transaction has its own local copy of the base object
associated with its read/write steps. Note that a local copy
of object x available with a transaction t is denoted by t.x,
and the globally shared copy is denoted by tψ.x. To keep
track of the conflicts between the transactions, the following
control variables are used.

ow: overwritten set (denoted as tψ.ow) that contains the
ids of the transactions that read some object x that was
modified later (so, there is a conflict).

rs: read set (denoted as tψ.x.rs) associated with each global
object tψ.x . It stores the ids of the transactions that
read from the object tψ.x since its last update.

fbd: forbidden set (denoted as tψ.x.fbd) associated with
each global object tψ.x . If t ∈ tψ.x.fbd, then it means
that the transaction t has read an object tψ.y that since
then has been overwritten (hence t ∈ tψ.ow ), and the
overwriting of tψ.y is such that any future read of tψ.x
by t will be invalid (i.e., the value obtained by t from
tψ.y and any value it will obtain from tψ.x in the future
cannot be mutually consistent).

In the following discussion, all the references to line num-
bers are associated with Protocol 1. When a transaction t1
performs a read operation on tψ.x, it adds its id in tψ.x.rs
(line 04). Later, when another transaction t2 modifies ob-
jects tψ.x and tψ.y, it adds t1 to tψ.ow (line 17), followed
by updating both tψ.x.fbd and tψ.y.fbd (line 18). Now, if
t1 tries to access tψ.y, it will detect the conflict by notic-
ing its id in tψ.y.fbd, and consequently abort (due to line
05). Besides, a transaction t maintains two local sets, t.lrs
(local read set) and t.lws (local write set) to document its
read/write operations (lines 03, 11). Before committing, the
validation phase comprises of ensuring that the transaction
does not belong to set tψ.ow (line 15). However, a transac-
tion that has no write operation is committed immediately
(lines 12-13), and is thus treated differently.

3.2 Overview of HParSTM

The higher level design of HParSTM can be characterized by
the following features. An in [1], we have a control variable
tψ.ow, and shared copies of base objects using sets rs and
fbd as control variables at the global level. We also replicate
these variables (lock based local copies of objects using rs
and fbd, and a set ow) at each level (node) of transaction
tree. Similar semantics are associated with the operations on
these control variables (rs, fbd and ow). A (sub)transaction
t’s local copy t.x is accessible to t as well as its descendants.
When the descendants of t access t.x, they add their ids to
t.x.rs (Of course, transaction t does not have to add its id to
t.x.rs as t.x is its local object). Later, if t.x is modified by t
or its children during their commit, then all the ids present
in t.x.rs are added to t.ow, followed by updating x.fbd using
t.ow, and clearing t.x.rs (similar to Protocol 1: lines 17-18).

If a transaction t does not have a local copy of an ob-
ject x in its local space, then it first tries to read from its

nearest ancestor having a local copy of object x. If none of
the ancestors currently have a local copy of x, then t tries
to read from the globally shared copy of x.

Super transaction and super tree. We associate all
the globally shared objects/variables with a highest level
fictitious transaction called super transaction, denoted by
tψ, such that all the transactions previously referred to as
root-level transactions are now children of the super trans-
action. We call the resulting tree as super tree. Now, each
transaction tree is a subtree rooted at a child of the super
transaction in super tree.

4 Discussion of Contention Management
Issues

While designing HParSTM, we face several contention man-
agement issues related to nested transactions. Let the read
operation performed by a transaction t1 on an object x asso-
ciated with transaction t2 be denoted by rt1(t2.x). Similarly,
the write operation is denoted by wt1(t2.x). We discuss the
main issues using Fig. 1.

Fig. 1: Depicting contention management issues

4.1 Consistency Checking at the Time of Read
Operation

In [1], a transaction t has to take into account only its own
id while checking the consistency of its read step on a glob-
ally shared object. This is not sufficient in case of a nested
transaction. When a subtransaction t tries to read from an
object t

′
.x from its ancestor t

′
’s local space, it should ensure

that t
′
.x.fbd does not contain the id of (i) t or any of its in-

termediate ancestors up to t
′

and (ii) the subtransactions
that have already committed and merged with them.

4.2 Avoiding Cyclic Conflict through Transitivity
across Levels

For analyzing the cyclic conflict between transactions across
different levels, consider the following history based on Fig.
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1 (consider dotted arrows).

H1 = rt111(t1.x), wt12(t1.x), wt12(t1.y), wt12(t1.z), ct12 ,
rt11(t1.y), rt111(t11.y).

Here, first t111 reads from t1.x (⇒ t111 ∈ t1.x.rs). Later,
t12 modifies t1.x, t1.y and t1.z (⇒ t111 ∈ t1.x.fbd, t1.y.fbd
and t1.z.fbd). Next, t11 successfully reads from t1.y (as t11 /∈
t1.y.fbd) and creates its own local copy t11.y. Now, the ques-
tion is if t111 should be allowed to access t11.y? The answer
is no as it creates a cyclic conflict relation between t12 and
t111. Transaction t12 modified t1.x read earlier by t111, giv-
ing the serial order t111, t12. Next, t11 reads t1.y after t12
modifies t1.x, t1.y and t1.z together. Notice that t111 read-
ing from t11.y is as good as reading directly from t1.y, as
the value of t11.y is copied from t1.y. That gives the serial
order t12, t111, and hence the contradiction (cycle).

Solution. Checking the t
′
.x.rs ∪ t′ .x.fbd of each ances-

tor t
′

of t111 to figure out the ids of descendants of t11 that
previously read x would be a very expensive task. A simple
solution to the problem is as follows. At the time of reading
t1.y, t11 can notice that t111 ∈ t1.x.fbd, and consequently
adds t111 to t11.y.fbd and t11.ow (as t111 ∈ t11.y.rs) before it
finishes its read operation. Now, if t111 tries to access t11.y,
it will fail as t111 ∈ t11.y.fbd.

4.3 Keeping Track of Incompatible Read
Operations

H2 = rt111(t1.y), wt12(t1.x), wt12(t1.y), wt12(t1.z), ct12 ,
rt112(t1.z), (c111, c112)?

Consider the historyH2 in Fig. 1 (following solid arrows).
Here, suppose t111 ∈ t1.y.rs initially. Next, t12, during its
commit (wt12(t1.x)), adds t111 to t1.x.fbd, t1.y.fbd, t1.z.fbd
and t1.ow. Now, t112, on rt112(t1.z), finds t111 ∈ t1.y.fbd. As
t111 has not yet committed and merged with t112’s ancestor
t11, it is legal for t112 to read from t1.z at this point.

Now, the conflicting write operations of t12 are sand-
wiched between the respective read operations of t111 and
t112 on t1’s objects. Hence, t11 cannot be serialized at t1’s
level if both t111 and t112 are allowed to commit. In other
words, the two read operations rt111(t1.y) and rt112(t1.z)
are incompatible for t11. Thus, incompatible operations and
transactions are defined as follows.

Definition 1 (Incompatible operations and transac-
tions). Let t1, t2 be any two transactions in the super tree,
and t be the least common ancestor of t1 and t2. Let rt1(t

′
.x)

and rt2(t
′
.y) be successful read operations of t1 and t2 re-

spectively on t
′
’s objects x and y, where t

′
is an ances-

tor of t. Then these two read operations are incompatible if
t1 ∈ t

′
.y.fbd at the time of rt2(t

′
.y), or vice-versa. The two

such transactions, t1 and t2, are called incompatible trans-
actions.

Solution. Each subtransaction t maintains a set called
its (incompatible transaction set) to keep track of the trans-
actions it is incompatible with, and a set mts (merged trans-
action set) that contains the ids of subtransactions that have
merged with t, initially containing t. Further, set visited con-
tains the ids of t’s descendants that have visited t to search
for a local copy of an object. Suppose t reads x from an an-
cestor t

′
. Let t

′

prev be the transaction preceding t
′
in the path

from t
′

to t in the super tree. Then ids of all the transac-
tions, that are in t

′
.x.fbd and also present in t

′

prev.visited,
are added to t.its. Later, when t tries to merge with its
parent, it ensures that none of the transactions in t.its has
already merged with its parent. Similarly, the parent has to
ensure that none of the transactions in its own local set its
is a part of its child transaction trying to commit (merge).

5 Protocol

Protocol 2 describes HParSTM.

5.1 Transaction State

A transaction t begins with begin(parent id), where parent id
denotes the id of the parent of t. The parent id is null
for a root-level transaction. Then, it accesses memory lo-
cations using read or write operations. Finally, it completes
either by a try to commit call or by a abort call. The meth-
ods search anc, check compatibility and abort are helper func-
tions. The t.lrs (local read set) is used to record the objects
it read as well as the ancestors to which those objects be-
long. A set t.lws (local write set) is used to record its write
steps. The access to each copy of a base object is protected
by a lock. The set t.ow is used to store the ids of those de-
scendants of t that have read a value from its locally shared
objects whose values have been modified since the reading.
The variable t.parent denotes the id of the parent of transac-
tion t. The set t.prefix contains the ids of all the ancestors
of t in the super tree, including t. The set of currently active
children of t is given by t.acs (active children set). Further,
t.mts (merged transaction set) contains the ids of t as well
as those descendants of t whose results have been propa-
gated to (merged with) t. A descendant t

′
of t is included in

t.mts only when t
′

and all of its intermediate ancestors upto
t commit. The set t.its (incompatible transaction set) associ-
ated with a transaction t denotes a set of transactions that t
is incompatible with and hence cannot be merged together.
Further, a set t.visited contains the ids of t’s descendants
that visited node t while searching for a local copy of an
object.
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Protocol 2: HParSTM

-4 denotes “lower level to higher level”;
-unlock tprev.x (line 27) is applicable only when tprev 6= t;
-try to mergetp(t) is executed by the parent tp for one child t at a time.

1. State of base object x:
2. val :∈ V
3. rs and fbd : ⊂ T

4. State of transaction t:
5. parent ∈ T , parent’s id (tp)
6. lws ⊂ X
7. lrs⊂ X
8. prefix, acs, mts, its, visited and ow ⊂ T
9. los, a set of local copies of objects

10. Operation begint(tp):
11. t.parent← tp;
12. t.prefix← tp.prefix ∪ {t};
13. t.mts← {t};
14. tp.acs← tp.acs ∪ {t};

15. Operation invoke childt(tc):
16. tc.begin(t);

17. Operation readt(x) :
18. lock t.x;
19. if (t.x.val 6= null) then
20. v ← t.x.val;
21. unlock t.x; return v; end if;
22. v = search anct(x);
23. unlock t.x; return v;

24. Operation search anct(x) :
25. sm ← t.mts; tprev ← t;

26. for each 4t
′
∈ (t.prefix \ {t}) do

27. lock t
′
.x; unlock tprev.x;

28. t
′
.x.rs← t

′
.x.rs ∪ {t};

29. t
′
.visited← t

′
.visited ∪ {t};

30. if (t
′
.x.val 6= null) then

31. if ((t
′
.x.fbd ∩ sm 6= ∅)∨

32. ¬check compatibilityt(t
′
)) then

33. unlock t
′
.x; t.abort(1); end if

34. t.x.val← t
′
.x.val;

35. t.x.fbd← t
′
.x.fbd ∩ tprev.visited;

36. unlock t
′
.x;

37. t.its← t.its ∪ t.x.fbd;
38. t.ow ← t.ow ∪ t.x.fbd;
39. t.lrs← t.lrs ∪ {x};
40. return t.x.val; end if

41. sm ← sm ∪ t
′
.mts;

42. tprev ← t
′
; end for

43. Operation writet(x, v) :
44. lock t.x; t.x.val← v;
45. t.ow ← t.ow ∪ t.x.rs;
46. t.x.fbd← t.ow; t.x.rs← ∅;
47. unlock t.x;

48. t.lws← t.lws ∪ {x};

49. Operation try to mergetp(t) :
50. lock all tp.x : x ∈ (t.lrs ∪ t.lws) ;
51. if ((t.lws 6= ∅ ∧ (tp.ow ∩ t.mts) 6= ∅)∨
52. (¬check compatibilityt(tp)) then
53. abortt(1); end if
54. for each x ∈ (t.los \ tp.los) ∧ t.x.val 6= null do
55. tp.x.val← t.x.val;
56. tp.x.fbd← t.x.fbd; end for
57. tp.ow ← tp.ow ∪ t.ow ∪ (∪x∈t.lwstp.x.rs);
58. for each x ∈ t.lws do
59. tp.x.val← t.x.val;
60. tp.x.fbd← tp.ow;
61. tp.x.rs← ∅; end for
62. tp.lws← tp.lws ∪ t.lws;
63. tp.lrs← tp.lrs ∪ t.lrs;
64. tp.mts← tp.mts ∪ t.mts;
65. tp.its← tp.its ∪ t.its;
66. tp.acs← tp.acs \ {t};
67. release all the locks;

68. Operation check compatibilityt(t
′
) :

69. return ((t.mts ∩ t
′
.its = ∅) ∧ (t.its ∩ t

′
.mts = ∅));

70. Operation try to committ() :
71. if (t.parent 6= tψ) then
72. try to mergetp(t);
73. return (commit);
74. else // t is a root-level transaction
75. if (t.lws is empty) then
76. return (commit); end if
77. lock all objects tψ.x : x ∈ (t.lrs ∪ t.lws) ;
78. if (t.mts ∩ tψ.ow 6= ∅) then
79. abortt(1); end if
80. for each x ∈ t.lws do
81. tψ.x.val← t.x.val; end for
82. tψ.ow ← tψ.ow ∪ (∪x∈t.lwstψ.x.rs);
83. for each x ∈ t.lws do
84. tψ.x.fbd← tψ.ow;
85. tψ.x.rs← ∅; end for
86. release all the locks;
87. return (commit);

88. Operation abortt(abort type) :
89. release all the locks;
90. if (abort type = 1) then
91. if (tp 6= null) then
92. tp.acs← tp.acs \ {t}; end if
93. abort type = 2; end if

94. for each t
′
∈ t.acs do

95. t
′
.abort(abort type); end for

96. return (abort);

5.2 Working of HParSTM:

In HParSTM, the allocation of space for local copy of an ob-
ject (x) in the local space of a transaction is automatically

done whenever required. For a transaction t, this typically
happens when it (or its descendant) tries to obtain a lock on
a local copy t.x, and t.x does not already exist. At the time of
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memory allocation, the initial state of t.x is: t.x.val = null,
t.x.rs = ∅ and t.x.fbd = ∅. Further, in the text, wherever a
transaction is looking for a local copy of an object to read,
we mean non-null valued copy of that object. Several steps
of the protocol are self-explanatory. We describe only the
salient features. The procedures of the protocol are discussed
as follows.

begint(tp) : This method is called by the parent trans-
action tp at the time of invoking a new child transaction
t.

invoke childt(tc) : This method is used by transaction t
to invoke a new child tc.

readt(x) : If a local copy of an object x is available with
the transaction, then it reads the value from that copy. Oth-
erwise, it calls search anc.

search anct(x) : This procedure searches for the near-
est ancestor of t having a non-null valued local copy of x,
starting from the parent of t. At each level t

′
, t

′
.x is first

locked (and the previous level lock is released), and t
′
.x.rs

as well as t
′
.visited are updated. If t

′
.x is non-null, then the

consistency check is done as follows. It ensures that (1) none
of transactions in the set mts of t or any of t’s intermediate
ancestors up to t

′
belongs to t

′
.x.fbd, and (2) t is compati-

ble with t
′
. If the read step is found to be inconsistent, then

the transaction releases the lock on t
′
.x and aborts. If the

read step is valid, then it assigns the value to t
′
.x to t.x. Let

tprev be the transaction preceding t
′

in t.prefix in the order
of lower level to higher level. All the transactions that are
common in t

′
.x.fbd and tprev.visited are added to t.x.fbd,

and then t
′
.x is unlocked. Later, t.x.fbd is used to update

t.its and t.ow. Then entry x is added to t.lrs.
writet(x, v) : All the writes take place in the local space.

The effect of the write is reflected in the global object only
when the root transaction commits. In order to perform a
write on t.x in the local space, the transaction locks the local
copy t.x, updates the value of x.val, adds x.rs to ow, and
updates x.fbd using ow. Then, t unlocks t.x, and adds x in
t.lws.

try to mergetp(t) : This is a synchronized method, and
hence only one of the children of tp can invoke it at a time.
For each x ∈ (t.lrs ∪ t.lws) locks are obtained on parent’s
(tp) object tp.x. Remaining objects of tp are still accessible
to its descendants for locking and reading. Before merging
its local sets, t has to first check the consistency of its steps
for a successful merge process. If the consistency checking
fails, then the transaction aborts and releases the locks on
parent’s objects. It is possible that read and write sets of the
subtransaction contain certain objects that are not present
in the local read and write sets of its parent. Such objects in
the parent’s local space are updated using the child’s local
copy, and the control variables are also updated accordingly.

Next, for all objects ∈ t.lws, the ids in tp.x.rs are added
to tp.ow. Now, for each object x ∈ t.lws, value of tp.x is up-
dated using t.x, tp.x.fbd is updated using tp.ow, and tp.x.rs
is cleared. Finally, sets t.lws, t.lrs, are merged with corre-
sponding sets of the parent tp. Finally, the sets t.mts and

t.its are merged with those of the parent, and t is removed
from the parent’s set tp.acs.

check compatibilityt(t
′
) : This method returns true if t

and t
′

are compatible i.e. ((t.mts ∩ t′ .its = ∅) ∧ (t.its ∩
t
′
.mts = ∅)). Otherwise, it returns false.
try to committ() : The nature of a commit process of

a transaction t depends upon its type. If t is a non-root
transaction, its effect is not reflected on the global objects
immediately, rather it tries to merge its local read and write
sets with the local read and write sets of its parent.

In case t is a root-level transaction, then the behaviour
of the validation process for t is the similar to that pro-
posed in [1] for a non-nested transaction. When the root
transaction commits, the objects in its local write set are
modified globally i.e. the change is reflected in the globally
shared copy of objects available with tψ. If it is read only,
then it commits immediately. Otherwise, it locks all the ob-
jects in its sets t.lrs and t.lws. Then, it checks if any of the
subtransactions in its set t.mts belongs to the tψ.ow set. If
yes, then it means that the consistency of the root transac-
tion has been compromised, and the transaction releases all
the locks before aborting. Otherwise it updates the values
of all the global objects in its write set, followed by up-
dating tψ.ow and tψ.x.fbd for each x it writes. Finally, the
root transaction releases all the locks and commits. Note
that, during the commit of a root transaction, there is no
checking of incompatibility or update operations for the sets
acs,mts, its, lrs, lws of its parent.

abortt(abort type) : This method is invoked when a
transaction t has to be aborted. Before aborting, transac-
tion t releases all the locks in its possession. If abort type = 1
then, it removes its id from the set acs of its parent, pro-
vided it is not a root level transaction (whose parent is tψ).
The descendants of an aborting transaction do not neces-
sarily need to update the acs of their parent. Therefore, the
abort type is set to 2 during the abort of the descendants.
Finally, t calls the abort(2) method of its active children (if
any).

6 Informal discussion of proof for
correctness

To set up an analogy between Protocol 1 [1] and HParSTM,
the local copies of objects associated with a node t in a
transaction tree can be treated as globally shared copies for
the children (descendants) of t. Let tc be a child of t. Then,
observe that the entire transaction subtree rooted at tc can
be treated as a single transaction.

Construction of level-wise history Ht at node t: The his-
tory at node t is constructed as follows. Any read or write
operation performed on t.x by tc or its descendants is at-
tributed to tc. Further, each local read or write operation
performed by t itself on t.x is considered to have been per-
formed by a fictitious committed child of t, having that op-
eration as its only step.
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Definition of linearization point: An instant of time, i, in
the lifespan (local timeline) τt of transaction t is denoted by
τ it . Now, the linearization point, `tc , for subtransaction tc is
the time τ it at which the entire execution of tc can treated to
have occurred. Let t̂c denote “some transaction in tc.mts”.
Now, `tc is defined as follows.

– If tc aborts, `tc is the time just before t̂c is added to the
set t.ow (line 57 or 82).

– If tc is read only transaction and commits, `tc is placed
at the earliest of (1) the occurrence time of the test dur-
ing its last read operation (line 31-32 of the search anc
operation) and (2) the time just before t̂c is added to
t.ow (if it ever is).

– If tc is an update transaction and commits, `tc is placed
just after the execution of line 57 or line 82 by t (update
of t.ow).

Following a bottom up approach, we consider (consider)
the level-wise history at a level (node) t, and show the cor-
rectness at that level. Next, we consider the history at the
parent of t. Further, we separate the history of committed
transactions from that of aborted ones.

Committed transactions: The history restricted to com-
mitted transactions, obtained from Ht, is given by Π(Ht).
The steps of the aborted transactions are not included in
Π(Ht). Now, using the definition of linearization points de-
fined above and using t̂c wherever necessary, the sets of
proofs given in [1] can be applied to Ht. Further, observe
that checking for compatibility at the time of merging (line
52) ensures that Π(Ht) does not include incompatible trans-
actions. Thus, we can prove the correctness of committed
transactions at each node.

Aborted transactions: For proving the correctness, we
consider only one aborted transaction ta at a time. Further,
in case ta is incompatible with t (or some transaction that
merged with t) at time τ1

t , then we consider the part of Ht
up to a time just before τ1

t . Note that ta cannot have per-
formed any read operation on t’s object after time τ1

t due
to compatibility checking at the time of reading (line 32).

To show the linearization point of ta at its parent level,
we consider its read steps only, and treat it as a committed
read only transaction. Now, ta being a committed transac-
tion, we consider it in conjunction with the history of com-
mitted transactions, and prove the correctness in the same
way as done for committed transactions. Further, consider-
ing ta is a child of t, observe that ta does not update its
parent’s object (line 53 precedes lines 54-67). Thus, results
of an aborted transaction ta are not propagated upward in
the transaction tree.

7 Related Work

Moss and Hosking discussed the reference model for closed
and open nesting in transactional memory and described
preliminary architectural sketches [12]. In addition, they

proposed a simpler model called linear nesting in which
nested transactions run sequentially.

Recently, focus has been on supporting nested paral-
lelism in STM [2, 3, 4, 10]. Agrawal et al. proposed CWSTM,
a theoretical STM algorithm that supports nested parallel
transactions with the lowest upper bound of time complexity
[2]. In [4], Barreto et al. proposed a practical implementation
of the CWSTM algorithm which achieves depth-independent
time complexity of TM barriers. However, their work builds
upon rather complex data structures such as concurrent
stacks that could introduce additional runtime and state
overheads [4]. Baek et. al. provide yet another implementa-
tion for supporting nested parallelism. Finally, Volos et al.
proposed NePaLTM that supports nested parallelism inside
transactions [10]. While efficiently supporting nested paral-
lelism when no or low transactional synchronization is used,
NePaLTM serially executes nested parallel transactions us-
ing mutual exclusion locks. All of these works are based on
the assumption (constraint) that the parent transaction does
not execute while it has active child subtransactions. In con-
trast, HParSTM enhances concurrency by allowing all the
nodes in the transaction tree to execute in parallel.

8 Conclusion

This paper presents an STM protocol for supporting par-
allelism at all the levels of nested transactions i.e. between
sibling transactions as well as parent and child transactions.
It also offers an unique approach for contention management
for nested transactions across different levels by using con-
trol variables at each level of nesting. HParSTM relies upon
unbounded transaction identifier space, and hence may suf-
fer from memory overheads. However, this issue could be
addressed by employing the idea proposed in [4] for effi-
ciently reusing transaction identifiers under restricted num-
ber of worker threads. Finally, our work can be useful in
developing new research directions in this area.
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