I

!
||u|
@

l IBM Research

A Type System for
Data-Centric

Synchronization

Frank Tip and Jan Vitek?

Mandana Vaziri, Julian Dolby, Christian Hammert

IBM T.d. Watson Research Center and
T Purdue University

© 2010 IBM Corporation

IBM Research

Concurrency control is difficult

= Low-level data race occur when threads access a
location concurrently (at least one write) with no
synchronization

= Locking discipline involves non-local reasoning

= Even if every shared access is protected, data may
still end up in an inconsistent state

A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

A High-Level Data Race

class Vector {
Object[] data;
int count;

synchronized int size() { .. }

synchronized boolean addAll (Collection c) {
int size = c.size();

while (it.hasNext())
data[count++] = it.next () ;

3 /33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

synchronization is about preserving
data consistency

so why not associate synchronization
constraints directly with data”

4 /33 A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

ata-centric

SyNchronization
with AJ

A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Data-Centric Synchronization: Terminology

class BankAccount {
int checking, savings;
int transferCount;

void transfer (int amount) {
synchronized (this) {
checking -= amount;
savings += amount;

}

transferCount++;

A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Data-Centric Synchronization: Terminology

class BankAccount { atomic set S

int <Checking, savid§§>/’///

int transferCount;

void transfer (int amount) {
synchronized (this) {
checking -= amount;
savings += amount;

}

transferCount++;

A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Data-Centric Synchronization: Terminology

class BankAccount {

int <Checking, savingsy—

int transferCount;

atomic set S

unit of work on S —
preserves consistency
of S when executed
sequentially

void transfer (int amount) {
synchronized (this) {
checking -= amount;
savings += amount;

}

transferCount++;

© 2010 IBM Corporation

A Type System for Data-Centric Synchronization 06/22/10//[ECOOP

IBM Research

Atomic Sets

class Counter {
atomicset a;
atomic(a) int wval;

Counter(){ val = 0; }
int get(){ return val; }

void dec () { val--; }
void inc () { val++; }

7 /33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Atomic Sets

class Counter {
atomicset a;
atomic(a) int wval;

Counter(){ val = 0; }

int get(){ return val; }
void dec () { val--; }
void inc () { val++; }

Counter ¢ = new Counter () ;

Thread 1 — \ Thread 2

c.inc() ; c.inc();
c.dec() ;

c.val has value 1 when both threads have terminated

A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Aliasin
g the atomic set b in the object pointed to by

this is merged with atomic set a in the
class PairCounter { Counter object

atomicset b;

atomic(b) int diff;

atomic(b) Counter|a=this.b| low =newCounter|a=this.b]| ();
atomic(b) Counter|a=this.b| high=new Counter|a=this . b| ();

void incHigh () {
high.inc();
diff = high.get()-low.get();
}
}

9 /33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

unitfor

class Transfer {

void transfer (unitfor(a) Counter from,

unitfor (a) Counter to) {
from.dec() ;
to.inc () ;

10/33

A Type System for Data-Centric Synchronization

06/22/10//ECOOP

© 2010 IBM Corporation

IBM Research

A more realistic example

public abstract class AbsList {
atomicset a;
atomic(a) int size;

public
public
public
public

int size () { return size; }

abstract ListIterator iterator();

abstract void add (Object o) ;

abstract boolean addAll (unitfor(a) AbsList

c);

© 2010 IBM Corporation

11/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP

IBM Research

A more realistic example (continued)

class LinkedList extends AbsList {
atomic(a) Entry|b=this._a| header;

public LinkedList() {
header = new Entry|b=this.a| (null,null, null);
header .next = header.prev = header;

}

}

internal class Entry ({
atomicset b;
atomic(b) Object elem;
atomic (b) Entry|b=this.b| next;
atomic (b) Entry|b=this.b| prev;

12/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

mplementing AJ

13/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Implementation

= source-to-source translator with Eclipse
— atomic set annotations entered as Java comments
— implementation handles Java subset (no generics, inner classes
— support alias annotations for arrays | this . M[]F=this.M|

— translation generates standard synchronized block

14/33 A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Java Collections Framework

= Selected classes from Java Collections annotation
— ArrayList, LinkedList, HashMap, HashSet, atomicset 0
TreeMap...+ java.util dependencies atomic class 5
— 63 types and 10,860 LOC :
_ atomic 0
= Introduced atomic sets unitfor 55
— one atomicset for each of 5 subhierarchies, includes i 330
all instance fields ek
— alias annotations to relate iterators to their “owner” | array object 24
— one class made internal (LinkedList.Entry) array element 16
TOTAL 430

= ~1 annotation / 25 LOC

15/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

SPECjbb2005

= Widely used multi-threaded benchmark (8KLOC) | type #
— inconsistent/redundant synchronization atomicset 1
= Translation into AJ atomic class | 14
— for tuned version refactored some fields to make atomic 25
them final unitfor 0
N o= 1/"‘. alias 8
. S /I/r array object 0
| /I array element 1
- /i L TOTAL 49

| : I/I/r/———
//I..;I = ~1 annotation / 160 LOC

:/ = removed 125 occurrences

of synchronized

25 synchronized remain, related to wait/notify

16/33

A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

-ormalizing Ac

17/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Atomic Set Serializablity

= Ad guarantees
Theorem

Given a well-formed trace T and atomic set R,
events of each units of work of R happen serially.

18/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Modeling AJ

To be tractable, select a subset of AJ:

(FeatherweightJava + state + atomicsets) + threads

or

AJ - unitfor - arrays - modlfiers - generics - primitives - exceptions
- finals - statics - new_threads - interfaces

p u=cd program T = Cla=this.b| | C type
cd ::=class C extends D {as fd md} class a = atomic (a) | €
as ::= atomicseta | € ¢ w=internal | e
fd =arTf field
md =T M (T X) {TZ;s;returny} method E:=[| Elx: 7] lype env
s =u=s;s | skip| x=this.f | x=(1)y | statement

thisf=z | x=new 7 ()| x=y.m (2)

19/33 | A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Abstracting Java executions

= Dynamic Semantics
H;TTT -5, H;TT'T'

Scheduling is non-deterministic

= Traces are sequences of events:
read x.f, write x.f, call x.m, return

Thread 1 caII

Thread 2 retu rn

20/33 ‘ A Type System for Data-Centric Synchronization

06/22/10//ECOOP

f

© 2010 IBM Corporation

IBM Research

Modeling AJ executions

—>
= Units of work on same atomicset
are mutually exclusive —> <
= Modeled by restricting valid traces
<— —>
e
<— <—
<— <—

Definition An event e = (H,T,/,p) is valid if and only if, when { =—"r.m,
H(r) = C|r'|(T) and Cnotinternal then Ap'S € T.p' # pand (mF s) € S and
H(F(this)) = D|r’|(2).

PAVER ‘ A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Modeling AJ executions

= Units of work on same atomicset
are mutually exclusive

vt
f

= Modeled by restricting valid traces

f

Definition An event e = (H,T,/,p) is valid if and only if, when { =—"r.m,
H(r) = C|r'|(T) and Cnotinternal then Ap'S € T.p' # pand (mF s) € S and
H (F(this)) = D|r'|(Z).

PAVER | A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

What could go wrong?

22/33 A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

What could go wrong?

= A field is accessed outside of the
boundaries of a unit of work

22/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

What could go wrong?

= A field is accessed outside of the
boundaries of a unit of work

= Could this happen?

— Alias confusion... an object is
referenced from two atomicsets

Cla=this.b|

22/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

What could go wrong?

= A field is accessed outside of the
boundaries of a unit of work

= Could this happen?

— Alias confusion... an object is
referenced from two atomicsets

—Ownership leak... an object is
directly referenced from outside of
its atomicset

Cla=this.b|

-

22/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

What could go wrong?

= A field is accessed outside of the
boundaries of a unit of work

= Could this happen?

— Alias confusion... an object is
referenced from two atomicsets

—Ownership leak... an object is
directly referenced from outside of
its atomicset

Cla=this.b|

-

= A well-formed configuration is one,
where this does not occur

22/33 A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Technically,

(WF-CONFIGURATION)
HisWFinH TisWFinH +FCT (WF-EMPTY-HEAP) (WF-NPE-THREAD)
H:T is WF] is WFin H pNPE is WF in H

(WF-THREAD)

(WF-THREAD-BOT) (MF s)isWFinH S=S(mF x=ym(zZ);s")
(run F' s)is WFin H pSis WFin H
not internaly (F(this)) (F(m" F" ") € S(mF s), not internalg (F" (this))
p(run F' s) is WEin H and owneryg (F" (this)) = ownerg (F(this)))

pS(MFE s)is WFin H

(WF-HEAP)

(WF-FRAME)
(C has a implies w # ¢) H'is WFin H locals(M,F) = E EFs
fields(C) =att rz <, mT Vx € dom(F), F(X) <:p(his),n E(X)
H'[r — Clw|(7Z)] is WFin H (ME s)is WFin H

23/33

A Type System for Data-Centric Synchronization

06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Actually,

= Well-formedness ensures that
— all threads are in a consistent state
— heap is well-typed & no aliasing confusion & no ownership leaks

= We prove that AJd programs preserve WF properties

Theorem 1. Preservation. IfH:TTT is WFand H; TT T’ Lp H':TT'T', then
H:TT' T is WE.

Theorem 2. Progress. If H; T T T is WF and active(T), then H; TTWLP H:TT' T

24/33 A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

—
=)

s = ==
s =
—

—

IBM Research

Il
1
Hlay
-
i

Ad Type System

— subtyping rules
— viewpoint adaption
— type rule for classes, methods, and statement

25/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Subtyping

= Simple transitive, reflexive closure of the extends relation
= Alias types are define a distinct relation
= The language requires explicit casts for type changes

CextendsD C<:C' C' ' <:D
C<:C C<:D C<:D

C<:D

Cla=this.b| <: D|a=this.b|

26/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Typing a Class

= The internal annotation of parents must be preserved
= (single atomic set restriction is enforced)
= Must re-check inherited methods

fdOKinC methods(C) = md’ md' OKinC (D has a implies as = ¢)
(¢ = internal implies C has a) (D is internal implies « = internal)

. class C extends D {as fd md} OK

27/33 A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Typing a Class

= The internal annotation of parents must lbe preserved
= (single atomic set restriction is enforced)
= Must re-check inherited methods

fdOKinC methods(C) = md’ md' OKinC (D has a implies as = ¢)
(¢ = internal implies C has a) (D is internal implies « = internal)

. class C extends D {as fd md} OK

27/33 A Type System for Data-Centric Synchronization 06/22/10//[ECOOP © 2010 IBM Corporation

IBM Research

Typing a Class

= The internal annotation of parents must lbe preserved
= (single atomic set restriction is enforced)

fi OK in C_[methods(C)=md’ md" OKinG| (D has a implics as = c)

(¢ = internal implies C has a) (D is internal implies « = internal)

. class C extends D {as fd md} OK

27/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Typing statements

= Casting off an alias type is allowed for non-internal classes
= Casting between alias types must preserve aliases

E(x) = Dla=this.b| E(y) = Cla=this.b|

C hasa FE(this) hasb D <:C '

E F y = (Cla=this.b|)x

E(X) = C|a:'this.b| C not internal
E(y)=C

E F y=(C)x

28/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Typing statements

= Method calls require viewpoint adaption of arguments & return type
adapt(C,7) = C
adapt(Cla=this.b|,D|b=this.c|) = C|a=this.c|

Ey) =7 typeof(ry.m)=7—>717 FE(Z) =7
T, = adapt(7,7,) 7T = adapt(t,7y) EX) =171

E F x=y.m(z)

29/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

View point adaption

class C { atomicset c; class B { atomicset b;
B|b=this.c| x; void gee(B|b=this.b| x){
x=new B|b=this.c|();

X.gee(x)

3|b=this.c| Blb=this.b)|

30/33 A Type System for Data-Centric Synchronization 06/22/10//ECOOP

© 2010 IBM Corporation

IBM Research

Related Work

= See the paper for a complete list

= Atomic set
— Vaziri e/a [POPLO6] original proposal
— detection of atomicset serializability violations
* Hammer e/a [ICSEO8] dynamic
+ Kidd e/a [VMCAIQ9] static
= Data groups
— Leino e/a [OOPSLAQ8] abstract rep. of groups of fields for modular reasoning
= Atomicity and Race-free Types
— Flanagan e/a [ESOP99,PLDIOO0,PLDIO3, TOPLASO08, <o]

= Ownership types
— Zhao e/a [JFPO6] lightweight ownership disciplines

= Lock inference
— Cherem e/a. [PLDIO8], McCloskey e/a [POPLO6]

31/33 | A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

IBM Research

Conclusions

= A type system for data-centric synchronization which
—guarantees atomic-set serializablility
—enables separate compilation
—handles unbounded sets

= Annotation overhead competitive with race-freedom and
atomicity type systems

" Future
—Iimprove performance
—local annotation inference
— static deadlock prevention

32/33 | A Type System for Data-Centric Synchronization 06/22/10//ECOOP © 2010 IBM Corporation

