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Concurrency control is difficult

 Low-level data race occur when threads access a 
location concurrently (at least one write) with no 
synchronization

 Locking discipline involves non-local reasoning

 Even if every shared access is protected, data may 
still end up in an inconsistent state 
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A High-Level Data Race

class Vector  {
  Object[] data;
  int count;
  … 
  synchronized int size() { … }

  synchronized boolean addAll(Collection c){
    int size = c.size();
    … 
    while (it.hasNext()) 
        data[count++] = it.next();
     …
  }
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synchronization is about preserving 
data consistency

so why not associate synchronization 
constraints directly with data?
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Data-centric
Synchronization  
with AJ
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Data-Centric Synchronization: Terminology

class BankAccount {
   int checking, savings;
   int transferCount;
 
   void transfer(int amount) {
     synchronized(this) { 
       checking -= amount; 
       savings += amount;
     }
     transferCount++;
     …
   }

}
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Data-Centric Synchronization: Terminology

class BankAccount {
   int checking, savings;
   int transferCount;
 
   void transfer(int amount) {
     synchronized(this) { 
       checking -= amount; 
       savings += amount;
     }
     transferCount++;
     …
   }

}

atomic set S

unit of work on S
preserves consistency 
of S when executed 
sequentially
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Atomic Sets
class Counter {
  atomicset a;
  atomic(a) int val;

  Counter(){ val = 0; }

  int get(){ return val; }
  void dec(){ val--; }
  void inc(){ val++; }
}
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Atomic Sets
class Counter {
  atomicset a;
  atomic(a) int val;

  Counter(){ val = 0; }

  int get(){ return val; }
  void dec(){ val--; }
  void inc(){ val++; }
}

Counter c = new Counter();

c.inc();
c.dec();

c.inc();
Thread 1 Thread 2

c.val has value 1 when both threads have terminated
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Aliasing

class PairCounter {
  atomicset b;
  atomic(b) int diff;
  atomic(b) Counter|a=this.b| low  = new Counter|a=this.b|();
  atomic(b) Counter|a=this.b| high = new Counter|a=this.b|();
  
  void incHigh(){ 
    high.inc(); 
    diff = high.get()-low.get(); 
  }
}

the atomic set b in the object pointed to by
 this is merged with atomic set a in the 
Counter object
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unitfor

class Transfer {
 
  void transfer(unitfor(a) Counter from,
                unitfor(a) Counter to){ 
    from.dec(); 
    to.inc(); 
  }
}
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A more realistic example
public abstract class AbsList { 
  atomicset a; 
  atomic(a) int size;

  public int size(){ return size; } 
  public abstract ListIterator iterator(); 
  public abstract void add(Object o); 
  public abstract boolean addAll(unitfor(a) AbsList c);
  … 
}
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A more realistic example (continued)
class LinkedList extends AbsList { 
  atomic(a) Entry|b=this.a| header;

  public LinkedList(){ 
    header = new Entry|b=this.a|(null,null,null);
    header.next = header.prev = header;
  } 
  
  …
}

internal class Entry { 
  atomicset b;
  atomic(b) Object elem;
  atomic(b) Entry|b=this.b| next;
  atomic(b) Entry|b=this.b| prev;
  …
}
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Implementing AJ
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Implementation

 source-to-source translator with Eclipse
– atomic set annotations entered as Java comments

– implementation handles Java subset (no generics, inner classes

– support alias annotations for arrays |this.M[]F=this.M|

– translation generates standard synchronized block

14
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Java Collections Framework

 Selected classes from Java Collections 
– ArrayList, LinkedList, HashMap, HashSet, 

TreeMap…+ java.util dependencies
– 63 types and 10,860 LOC

 Introduced atomic sets
– one atomicset for each of 5 subhierarchies, includes 

all instance fields
– alias annotations to relate iterators to their “owner”
– one class made internal (LinkedList.Entry)

annotation #

atomicset 0
atomic class 5
atomic 0
unitfor 55
alias 330
array object 24
array element 16
TOTAL 430

 ~1 annotation / 25 LOC
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SPECjbb2005
 Widely used multi-threaded benchmark (8KLOC)

– inconsistent/redundant synchronization

 Translation into AJ
– for tuned version refactored some fields to make 

them final

type #

atomicset 1
atomic class 14
atomic 25
unitfor 0
alias 8
array object 0
array element 1
TOTAL 49

 ~1 annotation / 160 LOC

 removed 125 occurrences 
of synchronized

    25 synchronized remain, related to wait/notify
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Formalizing AJ
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Atomic Set Serializablity

18

AJ guarantees
                                                                Theorem

Given a well-formed trace T and atomic set R, 
events of each units of work of R happen serially.
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Modeling AJ

19

To be tractable, select a subset of AJ:

    ( FeatherweightJava + state + atomicsets ) + threads

or  
     AJ - unitfor - arrays - modifiers - generics - primitives - exceptions 
          - finals - statics - new_threads - interfaces

p ::= cd program
cd ::= ι class C extends D {as fd md} class
as ::= atomicset a | �
fd ::= α τ f field
md ::= τ m (τ x) {τ z; s;return y} method
s ::= s;s | skip | x =this.f | x =(τ )y | statement

this.f =z | x =new τ () | x =y.m (z)

τ ::= C|a= this.b| | C type
α ::= atomic (a) | �
ι ::= internal | �

E ::= [] | E[x : τ ] type env

Fig. 7. AJ’s syntax. C, D are class names, f, m are field and method names, and x, y, z
are names of variables or parameters. this is a distinguished variable. For simplicity, we
assume that names of classes, fields, methods and variables are unique.

results of fields and variable accesses, method calls and instantiations must be immedi-
ately stored in a variable. A further simplification is the elimination of implicit upcasts
for arguments, return values, and assignments. All casts are performed explicitly by cast
statements which simplifies the other rules as they can assume type equality. Downcasts
are safe in AJ because, as in Java, there is a runtime test to check that the object belongs
to the target type and all AJ-specific properties are preserved by subtyping, i.e. subtypes
have the same atomic sets and are internal if their parent is internal. Upcasts are more
interesting as they involve loss of type information. For brevity, we assume the exis-
tence of a well-formed class-table CT . Auxiliary functions are given in Fig. 8. We use
the shorthand x <: τ to denote the pointwise subtype relation x1 <: τ1, . . . , xn <: τn.
The subtyping relation is standard with the exception of the rule for types with alias
annotations, which restricts subtyping to be annotation invariant.

C <: D
C|a= this.b| <: D|a= this.b|

We define the viewpoint adaption predicate adapt such that the value of adapt(τ, τ �)
is the view of type τ from type τ �. If τ is a raw type C, then it is unchanged. If τ has
an alias annotation, such as C|a = this.b|, and it is viewed from a type D|b = this.c|,
then the value of this.b is substituted with this.c, yielding C|a= this.c|. In cases where
adapt is undefined a type error will be reported as the type is not accessible from that
particular viewpoint.

adapt(C, τ) = C

adapt(C|a= this.b|, D|b= this.c|) = C|a= this.c|

4.2 Type System

Classes, fields, and methods. A class definition C is well-typed if its fields are well-
typed in the context of C. Furthermore, all methods (including non-overridden inherited
methods) must be well-typed. In case the class inherits an atomic set, then it is not
allowed to define a new one. If the class is declared internal it must have an atomic
set, or inherit one. Finally, internal annotations must be preserved by inheritance. In the
definitions below, we use the notation C has a to indicate that class C declares or inherits
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Abstracting Java executions

 Dynamic Semantics

 Scheduling is non-deterministic

 Traces are sequences of events: 

   read x.f, write x.f, call x.m, return

Thread 1

Thread 2

call

return

H ::= [] | H[r �→ v] heap
T ::= ρ S | ρ NPE thread
S ::= � | S �m F s� stack

F ::= [] | F [y �→ r] stack frame
v ::= C|ω|(r) object
ω ::= r | � owner atomic set

Fig. 9. Syntax for heaps, threads, stacks, frames and objects.

At run-time, an object C|ω|(r), consists of a class C, an atomic set owner ω (either a
location r or empty) and values r for the object’s fields (either locations or null).
We model multi-threaded Java programs with a fixed set of threads, T , each of which
initially starts with a call to a run method. Threads are terminated either when the run

method returns or by a null pointer exception (NPE). The reduction relation �−→ρ rep-
resents a step of evaluation. The label � describes the action and the thread identifier ρ
specifies the thread that performed it. Action labels can be one of the following: ↑ r.f
(field select), ↓ r.f (field update), ← r.m (method return), → r.m (method call), or
� (empty action). Labels will be used in Section 4.5 to define traces, they record op-
erations that may lead to a data race (reads/writes) and operations that correspond to
potential unit of work boundaries (calls/returns). Basic thread-scheduling is modeled
as a non-deterministic choice in (D-SCHEDULE). Each step picks one of the threads for
reduction, we assume a fixed number of threads.

(D-SCHEDULE)

H; T T � T
�−→ρ H

�; T T � T �

H; T T T � �−→ρ H
�; T T � T �

We abuse syntax a little bit and treat return y as a statement. Returning from a call
implies popping the topmost frame off the stack, and capturing the return value. Upcasts
and skip statements have the expected semantics.

(D-RETURN)
F (y) = r F (this) = r

�

H; T ρ S �m�
F
� x = y�.m(z); s���m F return y� ←r�.m−→ ρ H; T ρ S �m�

F
�[x �→ r] s��

(D-CAST)

H; T ρ S �m F x=(τ)y; s� �−→ρ H; T ρ S �m F [x �→F (y)] s�
Field selection extracts one of the references stored in the object, while field update
modifies the content of the object at the proper location. We define H(r.fi) as follows:
H(r.fi) = ri if H(r) = C|ω|(r1 . . . ri . . . , rn) and fields(C) = f1, . . . fi . . . , fn.

(D-SELECT)
F (this) = r H(r.fi) = ri

H; T ρ S �m F x= this.fi; s� ↑r.fi−→ρ H; T ρ S �m F [x �→ ri] s�
(D-UPDATE)

F (this) = r F (x) = rx H(r) = C|ω|(r, ri, r
�) H

� ≡ H[r �→ C|ω|(r, rx, r
�)]

H; T ρ S �m F this.fi =x; s� ↓r.fi−→ρ H
�; T ρ S �m F s�

Object creation comes in three flavors. (D-NEW-PLAIN) covers the construction of plain
Java objects where the owner is empty. (D-NEW-SELF) takes care of creation of an in-
stance of a class that has an atomic set and for which no alias annotation is specified.
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Modeling AJ executions

 Units of work on same atomicset 
are mutually exclusive

 Modeled by restricting valid traces

Theorem 1. Preservation. If H;T T T � is WF and H;T T T � �−→ρ H
�;T T � T �, then

H;T T � T � is WF.
We define the notion of an active thread as a thread that it has not stumbled on a NPE
or returned from its bottommost stack frame.
Definition 1. A thread T ≡ ρ S is active, denoted active(T ), if S �≡ NPE and S �≡
�run F return y�.
Progress requires that if there exists an active thread in a well-formed configuration,
this thread should be allowed to make a step.

Theorem 2. Progress. If H;T T T � is WF and active(T ), then H;T T T � �−→ρ H
�;T T � T �.

4.5 Concurrency Control

The AJ semantics is purposefully silent about synchronization to allow for different
concurrency-control strategies. The implementation presented in this paper uses mutual
exclusion locks, our previous work used read-write locks, and we are experimenting
with a transactional implementation.

The execution of a program can be characterized by a trace t which is a sequence
of events e1 . . . en performed by individual threads. For any implementation of AJ, we
define the concurrency-control policy as a predicate over traces. We say that any trace
accepted by an implementation is well-formed. The current implementation disallows
multiple invocations of methods on objects having the same owner to execute concur-
rently by associating mutual exclusion locks to atomic set instances. We formalize this
with the following definition of valid event. Let an event e be a tuple (H,T , �, ρ) con-
sisting of a configuration, an action label and a thread id. We say that an event is valid
if it has any action label other than a method call. An event with a method call on an
object of an internal class is valid. For calls to non-internal classes, an event is valid if
there are no outstanding method calls of objects with the same owner in other threads.

Definition 2. An event e = (H,T , �, ρ) is valid if and only if, when � =→ r.m,
H(r) = C|r�|(r) and C not internal then � ∃ ρ�

S ∈ T .ρ� �= ρ and �m F s� ∈ S and
H(F (this)) = D|r�|(z).
In our implementation, a well-formed trace is a trace in which every event is valid and
every configuration is WF. This property, enforced by the AJ runtime system, is not
sufficient in itself to prevent data races. The type system guarantees that all objects
belonging to an atomic set (in particular internal objects) are accessed only through
methods that are units of work for the atomic set.

4.6 Atomic-Set Serializability

Serializability of atomic set operations follows from the above restriction to valid traces
(mutual exclusion of methods of non-internal classes operating on the same atomic set)
and the fact that all fields labeled atomic(a), including those of internal classes, are
accessed within a method of a non-internal class operating on that atomic set. Given a
well-formed trace t and an event e in t, asett(e) gives the owner atomic set accessed by
e, if any.
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belonging to an atomic set (in particular internal objects) are accessed only through
methods that are units of work for the atomic set.
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C|a=this.b|

 A field is accessed outside of the 
boundaries of a unit of work

 Could this happen? 
– Alias confusion… an object is 

referenced from two atomicsets

– Ownership leak… an object is 
directly referenced from outside of 
its atomicset

 A well-formed configuration is one, 
where this does not occur
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What could go wrong?
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Technically,

last case is if τ is an aliased type D|a = this.b| in which case we must check that r has
the same owner as ro.

null <:ro,H τ

H(r) = C|ω|(r) C <: D
C not internal

r <:ro,H D

H(r) = C|ω|(r) C <: D
ownerH (r) = ownerH (ro)

r <:ro,H D|b= this.a|

Notice that the runtime subtyping relation satisfies the following property. If r <:ro,H τ
and r �= null, then if τ is raw then not internalH (r), and if τ not raw then ownerH (r) =
ownerH (ro).

Well-formed configurations. A configuration is well-formed, written H;T is WF, if the
heap and threads are well-formed and the class table is well-typed. A heap H is well-
formed if it is empty or if all fields of all objects it contains are well-typed, meaning that
the reference corresponding to each field is a runtime subtype of the static type of that
field. A thread T is well-formed, written T is WF in H , if it is stuck on a null pointer
exception, or if all of its frames are well-formed, and it satisfies the following property:
for each frame on the stack, if the this reference belongs to an internal class, then there
exists another frame earlier in the stack with the same owner, but that is not internal.

A frame F is well-formed if for each variable x in the domain of F , the correspond-
ing reference is a runtime subtype of the static type of x. The rules appear in Fig. 10.

(WF-CONFIGURATION)

H is WF in H T is WF in H � CT

H; T is WF

(WF-EMPTY-HEAP)

[] is WF in H

(WF-NPE-THREAD)

ρ NPE is WF in H

(WF-THREAD-BOT)
�run F s� is WF in H

not internalH (F (this))

ρ �run F s� is WF in H

(WF-THREAD)

�m F s� is WF in H S ≡ S
��m�

F
� x = y.m(z�); s���

ρ S is WF in H

(∃�m��
F

��
s
��� ∈ S�m F s�, not internalH (F ��(this))

and ownerH (F ��(this)) = ownerH (F (this)))

ρ S�m F s� is WF in H

(WF-HEAP)
(C has a implies ω �= �) H

� is WF in H

fields(C) = α τ f rz <:r,H τ

H
�[r �→ C|ω|(rz)] is WF in H

(WF-FRAME)
locals(m, F ) = E E � s

∀ x ∈ dom(F ), F (x) <:F (this),H E(x)

�m F s� is WF in H

Fig. 10. Well-formedness rules.

Type Soundness. We prove type soundness of AJ by showing preservation and progress.
Here, preservation means that reduction of a well-formed configuration results in a well-
formed configuration, and the proof of preservation states that after a step of reduction
a well-formed configuration remains well-formed.
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Actually,

 Well-formedness ensures that 
– all threads are in a consistent state

– heap is well-typed & no aliasing confusion & no ownership leaks

 We prove that AJ programs preserve WF properties

Theorem 1. Preservation. If H;T T T � is WF and H;T T T � �−→ρ H
�;T T � T �, then

H;T T � T � is WF.
We define the notion of an active thread as a thread that it has not stumbled on a NPE
or returned from its bottommost stack frame.
Definition 1. A thread T ≡ ρ S is active, denoted active(T ), if S �≡ NPE and S �≡
�run F return y�.
Progress requires that if there exists an active thread in a well-formed configuration,
this thread should be allowed to make a step.

Theorem 2. Progress. If H;T T T � is WF and active(T ), then H;T T T � �−→ρ H
�;T T � T �.

4.5 Concurrency Control

The AJ semantics is purposefully silent about synchronization to allow for different
concurrency-control strategies. The implementation presented in this paper uses mutual
exclusion locks, our previous work used read-write locks, and we are experimenting
with a transactional implementation.

The execution of a program can be characterized by a trace t which is a sequence
of events e1 . . . en performed by individual threads. For any implementation of AJ, we
define the concurrency-control policy as a predicate over traces. We say that any trace
accepted by an implementation is well-formed. The current implementation disallows
multiple invocations of methods on objects having the same owner to execute concur-
rently by associating mutual exclusion locks to atomic set instances. We formalize this
with the following definition of valid event. Let an event e be a tuple (H,T , �, ρ) con-
sisting of a configuration, an action label and a thread id. We say that an event is valid
if it has any action label other than a method call. An event with a method call on an
object of an internal class is valid. For calls to non-internal classes, an event is valid if
there are no outstanding method calls of objects with the same owner in other threads.

Definition 2. An event e = (H,T , �, ρ) is valid if and only if, when � =→ r.m,
H(r) = C|r�|(r) and C not internal then � ∃ ρ�

S ∈ T .ρ� �= ρ and �m F s� ∈ S and
H(F (this)) = D|r�|(z).
In our implementation, a well-formed trace is a trace in which every event is valid and
every configuration is WF. This property, enforced by the AJ runtime system, is not
sufficient in itself to prevent data races. The type system guarantees that all objects
belonging to an atomic set (in particular internal objects) are accessed only through
methods that are units of work for the atomic set.

4.6 Atomic-Set Serializability

Serializability of atomic set operations follows from the above restriction to valid traces
(mutual exclusion of methods of non-internal classes operating on the same atomic set)
and the fact that all fields labeled atomic(a), including those of internal classes, are
accessed within a method of a non-internal class operating on that atomic set. Given a
well-formed trace t and an event e in t, asett(e) gives the owner atomic set accessed by
e, if any.

Theorem 1. Preservation. If H;T T T � is WF and H;T T T � �−→ρ H
�;T T � T �, then

H;T T � T � is WF.
We define the notion of an active thread as a thread that it has not stumbled on a NPE
or returned from its bottommost stack frame.
Definition 1. A thread T ≡ ρ S is active, denoted active(T ), if S �≡ NPE and S �≡
�run F return y�.
Progress requires that if there exists an active thread in a well-formed configuration,
this thread should be allowed to make a step.

Theorem 2. Progress. If H;T T T � is WF and active(T ), then H;T T T � �−→ρ H
�;T T � T �.

4.5 Concurrency Control

The AJ semantics is purposefully silent about synchronization to allow for different
concurrency-control strategies. The implementation presented in this paper uses mutual
exclusion locks, our previous work used read-write locks, and we are experimenting
with a transactional implementation.

The execution of a program can be characterized by a trace t which is a sequence
of events e1 . . . en performed by individual threads. For any implementation of AJ, we
define the concurrency-control policy as a predicate over traces. We say that any trace
accepted by an implementation is well-formed. The current implementation disallows
multiple invocations of methods on objects having the same owner to execute concur-
rently by associating mutual exclusion locks to atomic set instances. We formalize this
with the following definition of valid event. Let an event e be a tuple (H,T , �, ρ) con-
sisting of a configuration, an action label and a thread id. We say that an event is valid
if it has any action label other than a method call. An event with a method call on an
object of an internal class is valid. For calls to non-internal classes, an event is valid if
there are no outstanding method calls of objects with the same owner in other threads.

Definition 2. An event e = (H,T , �, ρ) is valid if and only if, when � =→ r.m,
H(r) = C|r�|(r) and C not internal then � ∃ ρ�

S ∈ T .ρ� �= ρ and �m F s� ∈ S and
H(F (this)) = D|r�|(z).
In our implementation, a well-formed trace is a trace in which every event is valid and
every configuration is WF. This property, enforced by the AJ runtime system, is not
sufficient in itself to prevent data races. The type system guarantees that all objects
belonging to an atomic set (in particular internal objects) are accessed only through
methods that are units of work for the atomic set.

4.6 Atomic-Set Serializability

Serializability of atomic set operations follows from the above restriction to valid traces
(mutual exclusion of methods of non-internal classes operating on the same atomic set)
and the fact that all fields labeled atomic(a), including those of internal classes, are
accessed within a method of a non-internal class operating on that atomic set. Given a
well-formed trace t and an event e in t, asett(e) gives the owner atomic set accessed by
e, if any.
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AJ Type System

– subtyping rules

– viewpoint adaption

– type rule for classes, methods, and statement
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Subtyping

 Simple transitive, reflexive closure of the extends relation

 Alias types are define a distinct relation

 The language requires explicit casts for type changes

Subtyping:

C <: C

C extends D

C <: D

C <: C
�

C
�
<: D

C <: D

C <: D

C|a= this.b| <: D|a= this.b|
Extends:
CT (C) = ι class C extends D{as fd md}

C extends D

Type lookup:
τ m(τx x){τz z; s; return y}∈methods(C)

typeof (C.m) = τx → τ

τ f∈fields(C)
typeof (C.f) = τ

Method lookup:
τ m(τx x){τz z; s; return y} ∈ methods(C)

mbody(C.m) = (τx x; τz z; s; return y)

Local vars:
H(F (this)) = C|ω|(r�)

mbody(C.m) = (τx x; τz z; s; return y)
E ≡ x : τx, z : τz, this : C

locals(m, F ) = E

Internal lookup:
CT (C) = internal class C extends D{. . .}

C is internal

Fields lookup:

fields(Object) = �

CT (C) = ι class C extends D{as fd md}
fields(D) = fd �

fields(C) = fd � fd

Methods lookup:

methods(Object) = �

CT (C) = ι class C extends D{as fd md}
methods(D) = md � md �� = md � −md

methods(C) = md md ��

Valid Method overriding:
typeof (C.m) = τ � → τ � implies

τ = τ � and τ = τ �

override(m, C, τ → τ)

Atomic set lookup:
CT (C) = ι class C extends D{as fd md}

as = � D has a

C has a

CT (C) = ι class C extends D{as fd md}
as = atomicset a

C has a

Atomic lookup:
atomic(a) τ f∈fields(C)

C.f is atomic

Fig. 8. Auxiliary definitions.

an atomic set a. Atomic sets referred to in field declarations must exist. Checking a

method requires typing its body in an environment E constructed by composing the

disjoint sets of parameters, x, local variables, z and the distinguished variable this. If

class C has an atomic set, the type of this is C|a = this.a|; This is the default case

when an object is in charge of its own synchronization (i.e., its atomic set has not been

aliased) and is needed to ensure that adapt is defined. The type of the local variable y

appearing in the return statement must match the return type of the method, and if this

method overrides an inherited method, the signature must be unchanged.

(T-CLASS)

fd OK in C methods(C) = md � md �
OK in C (D has a implies as = �)

(ι = internal implies C has a) (D is internal implies ι = internal)

ι class C extends D {as fd md} OK
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Typing a Class

Subtyping:

C <: C

C extends D

C <: D

C <: C
�

C
�
<: D

C <: D

C <: D

C|a= this.b| <: D|a= this.b|
Extends:
CT (C) = ι class C extends D{as fd md}

C extends D

Type lookup:
τ m(τx x){τz z; s; return y}∈methods(C)

typeof (C.m) = τx → τ

τ f∈fields(C)
typeof (C.f) = τ

Method lookup:
τ m(τx x){τz z; s; return y} ∈ methods(C)

mbody(C.m) = (τx x; τz z; s; return y)

Local vars:
H(F (this)) = C|ω|(r�)

mbody(C.m) = (τx x; τz z; s; return y)
E ≡ x : τx, z : τz, this : C

locals(m, F ) = E

Internal lookup:
CT (C) = internal class C extends D{. . .}

C is internal

Fields lookup:

fields(Object) = �

CT (C) = ι class C extends D{as fd md}
fields(D) = fd �

fields(C) = fd � fd

Methods lookup:

methods(Object) = �

CT (C) = ι class C extends D{as fd md}
methods(D) = md � md �� = md � −md

methods(C) = md md ��

Valid Method overriding:
typeof (C.m) = τ � → τ � implies

τ = τ � and τ = τ �

override(m, C, τ → τ)

Atomic set lookup:
CT (C) = ι class C extends D{as fd md}

as = � D has a

C has a

CT (C) = ι class C extends D{as fd md}
as = atomicset a

C has a

Atomic lookup:
atomic(a) τ f∈fields(C)

C.f is atomic

Fig. 8. Auxiliary definitions.

an atomic set a. Atomic sets referred to in field declarations must exist. Checking a

method requires typing its body in an environment E constructed by composing the

disjoint sets of parameters, x, local variables, z and the distinguished variable this. If

class C has an atomic set, the type of this is C|a = this.a|; This is the default case

when an object is in charge of its own synchronization (i.e., its atomic set has not been

aliased) and is needed to ensure that adapt is defined. The type of the local variable y

appearing in the return statement must match the return type of the method, and if this

method overrides an inherited method, the signature must be unchanged.

(T-CLASS)

fd OK in C methods(C) = md � md �
OK in C (D has a implies as = �)

(ι = internal implies C has a) (D is internal implies ι = internal)

ι class C extends D {as fd md} OK
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Typing a Class

Subtyping:

C <: C

C extends D

C <: D

C <: C
�

C
�
<: D

C <: D

C <: D

C|a= this.b| <: D|a= this.b|
Extends:
CT (C) = ι class C extends D{as fd md}

C extends D

Type lookup:
τ m(τx x){τz z; s; return y}∈methods(C)

typeof (C.m) = τx → τ

τ f∈fields(C)
typeof (C.f) = τ

Method lookup:
τ m(τx x){τz z; s; return y} ∈ methods(C)

mbody(C.m) = (τx x; τz z; s; return y)

Local vars:
H(F (this)) = C|ω|(r�)

mbody(C.m) = (τx x; τz z; s; return y)
E ≡ x : τx, z : τz, this : C

locals(m, F ) = E

Internal lookup:
CT (C) = internal class C extends D{. . .}

C is internal

Fields lookup:

fields(Object) = �

CT (C) = ι class C extends D{as fd md}
fields(D) = fd �

fields(C) = fd � fd

Methods lookup:

methods(Object) = �

CT (C) = ι class C extends D{as fd md}
methods(D) = md � md �� = md � −md

methods(C) = md md ��

Valid Method overriding:
typeof (C.m) = τ � → τ � implies

τ = τ � and τ = τ �

override(m, C, τ → τ)

Atomic set lookup:
CT (C) = ι class C extends D{as fd md}

as = � D has a

C has a

CT (C) = ι class C extends D{as fd md}
as = atomicset a

C has a

Atomic lookup:
atomic(a) τ f∈fields(C)

C.f is atomic

Fig. 8. Auxiliary definitions.

an atomic set a. Atomic sets referred to in field declarations must exist. Checking a

method requires typing its body in an environment E constructed by composing the

disjoint sets of parameters, x, local variables, z and the distinguished variable this. If

class C has an atomic set, the type of this is C|a = this.a|; This is the default case

when an object is in charge of its own synchronization (i.e., its atomic set has not been

aliased) and is needed to ensure that adapt is defined. The type of the local variable y

appearing in the return statement must match the return type of the method, and if this

method overrides an inherited method, the signature must be unchanged.

(T-CLASS)

fd OK in C methods(C) = md � md �
OK in C (D has a implies as = �)

(ι = internal implies C has a) (D is internal implies ι = internal)

ι class C extends D {as fd md} OK
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Typing a Class

Subtyping:

C <: C

C extends D

C <: D

C <: C
�

C
�
<: D

C <: D

C <: D

C|a= this.b| <: D|a= this.b|
Extends:
CT (C) = ι class C extends D{as fd md}

C extends D

Type lookup:
τ m(τx x){τz z; s; return y}∈methods(C)

typeof (C.m) = τx → τ

τ f∈fields(C)
typeof (C.f) = τ

Method lookup:
τ m(τx x){τz z; s; return y} ∈ methods(C)

mbody(C.m) = (τx x; τz z; s; return y)

Local vars:
H(F (this)) = C|ω|(r�)

mbody(C.m) = (τx x; τz z; s; return y)
E ≡ x : τx, z : τz, this : C

locals(m, F ) = E

Internal lookup:
CT (C) = internal class C extends D{. . .}

C is internal

Fields lookup:

fields(Object) = �

CT (C) = ι class C extends D{as fd md}
fields(D) = fd �

fields(C) = fd � fd

Methods lookup:

methods(Object) = �

CT (C) = ι class C extends D{as fd md}
methods(D) = md � md �� = md � −md

methods(C) = md md ��

Valid Method overriding:
typeof (C.m) = τ � → τ � implies

τ = τ � and τ = τ �

override(m, C, τ → τ)

Atomic set lookup:
CT (C) = ι class C extends D{as fd md}

as = � D has a

C has a

CT (C) = ι class C extends D{as fd md}
as = atomicset a

C has a

Atomic lookup:
atomic(a) τ f∈fields(C)

C.f is atomic

Fig. 8. Auxiliary definitions.

an atomic set a. Atomic sets referred to in field declarations must exist. Checking a

method requires typing its body in an environment E constructed by composing the

disjoint sets of parameters, x, local variables, z and the distinguished variable this. If

class C has an atomic set, the type of this is C|a = this.a|; This is the default case

when an object is in charge of its own synchronization (i.e., its atomic set has not been

aliased) and is needed to ensure that adapt is defined. The type of the local variable y

appearing in the return statement must match the return type of the method, and if this

method overrides an inherited method, the signature must be unchanged.

(T-CLASS)

fd OK in C methods(C) = md � md �
OK in C (D has a implies as = �)

(ι = internal implies C has a) (D is internal implies ι = internal)

ι class C extends D {as fd md} OK
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 Must re-check inherited methods



Finally, (T-CAST-OFF) strips the annotation from a type. This is only allowed for non-

internal classes. The rule for method calls, (T-CALL), checks the types of the arguments

and the return type. Viewpoint adaption is necessary to ensure that the types of the

arguments and the return value are visible from the viewpoint of the receiver.

(T-CAST-PLAIN)

E(x) = D E(y) = C D <: C

E � y = (C)x

(T-CAST-ASET)

E(x) = D|a= this.b| E(y) = C|a= this.b|
C has a E(this) has b D <: C

E � y = (C|a= this.b|)x
(T-CAST-OFF)

E(x) = C|a= this.b| C not internal

E(y) = C

E � y = (C)x

(T-CALL)

E(y) = τy typeof (τy.m) = τ → τ E(z) = τz

τz = adapt(τ , τy) τ � = adapt(τ, τy) E(x) = τ �

E � x = y.m(z)

Consider for instance calls (1) and (2) to method m() in the example below. The return

type of m is τ ≡ C|c = this.a|. At (1) τy ≡ A|a = this.b|, the value of adapt(τ, τy) =
C|c = this.b| indicating, as expected, that the C object shares the same atomic set as

the receiver. On the other hand, a2 is created with its own atomic set. Thus, at (2), the

result of adapt(τ, A) is undefined. The call does not type check because it would return

a value with an unknown alias.

class A extends Object {
atomicset a;

C|c=this.a| m(){
C|c=this.a| x;

x=new C|c=this.a|();
return x;

}
}
class C extends Object {

atomicset c;

}

class B extends Object {
atomicset b;

A f() {
A|a=this.b| a1; C|c=this.b| c1; A a2;

a1 = new A|a=this.b|();
c1 = a1.m(); //(1) OK

a2 = new A();

c1 = a2.m(); //(2) ERROR

return a2;

}
}

The rules for field selection and update check that the type of the field matches that of

the variable it is stored into.

(T-SELECT)

E(this) = τ E(x) = τf

typeof (τ.f) = τf

E � x = this.f

(T-UPDATE)

E(this) = τ E(y) = τf

typeof (τ.f) = τf

E � this.f = y

4.3 Dynamic Semantics

We formulate AJ’s dynamic semantics as a small-step operational semantics. See Fig. 9

for syntax. An AJ configuration H;T consists of a single heap H of locations mapped

to objects and a collection of threads T . Each thread T has its own stack S, plus a

unique thread id denoted ρ. A stack S is a sequence of triples �m F s� consisting of

a method name m, a stack frame F mapping variables to locations, and a statement s.
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Typing statements

 Casting off an alias type is allowed for non-internal classes

 Casting between alias types must preserve aliases

Finally, (T-CAST-OFF) strips the annotation from a type. This is only allowed for non-

internal classes. The rule for method calls, (T-CALL), checks the types of the arguments

and the return type. Viewpoint adaption is necessary to ensure that the types of the

arguments and the return value are visible from the viewpoint of the receiver.

(T-CAST-PLAIN)

E(x) = D E(y) = C D <: C

E � y = (C)x

(T-CAST-ASET)

E(x) = D|a= this.b| E(y) = C|a= this.b|
C has a E(this) has b D <: C

E � y = (C|a= this.b|)x
(T-CAST-OFF)

E(x) = C|a= this.b| C not internal

E(y) = C

E � y = (C)x

(T-CALL)

E(y) = τy typeof (τy.m) = τ → τ E(z) = τz

τz = adapt(τ , τy) τ � = adapt(τ, τy) E(x) = τ �

E � x = y.m(z)

Consider for instance calls (1) and (2) to method m() in the example below. The return

type of m is τ ≡ C|c = this.a|. At (1) τy ≡ A|a = this.b|, the value of adapt(τ, τy) =
C|c = this.b| indicating, as expected, that the C object shares the same atomic set as

the receiver. On the other hand, a2 is created with its own atomic set. Thus, at (2), the

result of adapt(τ, A) is undefined. The call does not type check because it would return

a value with an unknown alias.

class A extends Object {
atomicset a;

C|c=this.a| m(){
C|c=this.a| x;

x=new C|c=this.a|();
return x;

}
}
class C extends Object {

atomicset c;

}

class B extends Object {
atomicset b;

A f() {
A|a=this.b| a1; C|c=this.b| c1; A a2;

a1 = new A|a=this.b|();
c1 = a1.m(); //(1) OK

a2 = new A();

c1 = a2.m(); //(2) ERROR

return a2;

}
}

The rules for field selection and update check that the type of the field matches that of

the variable it is stored into.

(T-SELECT)

E(this) = τ E(x) = τf

typeof (τ.f) = τf

E � x = this.f

(T-UPDATE)

E(this) = τ E(y) = τf

typeof (τ.f) = τf

E � this.f = y

4.3 Dynamic Semantics

We formulate AJ’s dynamic semantics as a small-step operational semantics. See Fig. 9

for syntax. An AJ configuration H;T consists of a single heap H of locations mapped

to objects and a collection of threads T . Each thread T has its own stack S, plus a

unique thread id denoted ρ. A stack S is a sequence of triples �m F s� consisting of

a method name m, a stack frame F mapping variables to locations, and a statement s.
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Typing statements

 Method calls require viewpoint adaption of arguments & return type

Finally, (T-CAST-OFF) strips the annotation from a type. This is only allowed for non-

internal classes. The rule for method calls, (T-CALL), checks the types of the arguments

and the return type. Viewpoint adaption is necessary to ensure that the types of the

arguments and the return value are visible from the viewpoint of the receiver.

(T-CAST-PLAIN)

E(x) = D E(y) = C D <: C

E � y = (C)x

(T-CAST-ASET)

E(x) = D|a= this.b| E(y) = C|a= this.b|
C has a E(this) has b D <: C

E � y = (C|a= this.b|)x
(T-CAST-OFF)

E(x) = C|a= this.b| C not internal

E(y) = C

E � y = (C)x

(T-CALL)

E(y) = τy typeof (τy.m) = τ → τ E(z) = τz

τz = adapt(τ , τy) τ � = adapt(τ, τy) E(x) = τ �

E � x = y.m(z)

Consider for instance calls (1) and (2) to method m() in the example below. The return

type of m is τ ≡ C|c = this.a|. At (1) τy ≡ A|a = this.b|, the value of adapt(τ, τy) =
C|c = this.b| indicating, as expected, that the C object shares the same atomic set as

the receiver. On the other hand, a2 is created with its own atomic set. Thus, at (2), the

result of adapt(τ, A) is undefined. The call does not type check because it would return

a value with an unknown alias.

class A extends Object {
atomicset a;

C|c=this.a| m(){
C|c=this.a| x;

x=new C|c=this.a|();
return x;

}
}
class C extends Object {

atomicset c;

}

class B extends Object {
atomicset b;

A f() {
A|a=this.b| a1; C|c=this.b| c1; A a2;

a1 = new A|a=this.b|();
c1 = a1.m(); //(1) OK

a2 = new A();

c1 = a2.m(); //(2) ERROR

return a2;

}
}

The rules for field selection and update check that the type of the field matches that of

the variable it is stored into.

(T-SELECT)

E(this) = τ E(x) = τf

typeof (τ.f) = τf

E � x = this.f

(T-UPDATE)

E(this) = τ E(y) = τf

typeof (τ.f) = τf

E � this.f = y

4.3 Dynamic Semantics

We formulate AJ’s dynamic semantics as a small-step operational semantics. See Fig. 9

for syntax. An AJ configuration H;T consists of a single heap H of locations mapped

to objects and a collection of threads T . Each thread T has its own stack S, plus a

unique thread id denoted ρ. A stack S is a sequence of triples �m F s� consisting of

a method name m, a stack frame F mapping variables to locations, and a statement s.

adapt(C, τ) = C

adapt(C|a= this.b|, D|b= this.c|) = C|a= this.c|
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View point adaption
class C { atomicset c;
  B|b=this.c| x;
  x=new B|b=this.c|();
  x.gee(x)

class B { atomicset b; 
 void gee(B|b=this.b| x){

30
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Related Work
 See the paper for a complete list
 Atomic set

– Vaziri e/a [POPL06]  original proposal
– detection of atomicset serializability violations

• Hammer e/a [ICSE08] dynamic 
• Kidd e/a [VMCAI09] static

 Data groups
– Leino e/a [OOPSLA98] abstract rep. of groups of fields for modular reasoning 

 Atomicity and Race-free Types
– Flanagan e/a [ESOP99,PLDI00,PLDI03,TOPLAS08, ∞]

 Ownership types
– Zhao e/a [JFP06] lightweight ownership disciplines

 Lock inference
– Cherem e/a. [PLDI08], McCloskey e/a [POPL06]
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Conclusions

 A type system for data-centric synchronization which
– guarantees atomic-set serializablility 
– enables separate compilation
– handles unbounded sets

 Annotation overhead competitive with race-freedom and 
atomicity type systems

 Future
– improve performance
– local annotation inference
– static deadlock prevention
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