
Chapter 1

Java Metadata Annotations

Last edited by Jan Vitek, Ales Plsek, Date: 2011/07/15 19:21:08 .
This chapter describes Java Metadata annotations used by the SCJ. Java Metadata
annotations enable developers to add additional typing information to a Java pro-
gram, thereby enabling more detailed functional and non functional analyses, both
for ensuring program consistency and for aiding the runtime system to produce more
efficient code. These metadata annotations provide a basis for additional checks for
ensuring the correctness and efficiency of safety critical Java programs. They are
retained in the compiled bytecode intermediate format and are thus available for per-
forming validation at class load-time. One interest in using metadata annotations is
to ensure memory safety, thus preventing several exceptions from being thrown at
runtime. They are also used for enforcement of compliance levels and restricting the
behavior of certain methods.

The specification differentiates between user code and infrastructure code. User code
is checked by the tool to abide by the restrictions outlined in this chapter. Infrastruc-
ture code is verified by the vendor. Infrastructure code includes the java and javax
packages as well as vendor specific libraries.

1.1 Semantics and Requirements

The SCJ annotations address the following three groups of properties.

• Compliance Levels—The SCJ specification defines three levels of compliance.
Both application and infrastructure code must adhere to one of these compli-
ance levels. Consequently, a code belonging to a certain level may access only
the code that is at the same or higher level. This ensures that an SCJ application
is consistent with respect to the specified SCJ level.

1

Safety-Critical Java Technology Specification

• Behavioral Restrictions—Since the execution of the missions are implemented
as a sequence of specific phases (initialization, execution, cleanup), the appli-
cation must clearly distinguish between these phases. Furthermore, it is illegal
to access SCJ functionality that is not provided for current execution phase of
a mission.

• Memory Safety—To ease certification and improve the safety of developed
software, SCJ provides annotations that may be used to analyze the memory
management of a program prior to system execution.

1.2 Annotations for Enforcing Compliance Levels

API visibility annotations are used to prevent client programmers from accessing
SCJ API methods that are intended to be internal. Since the SCJ specification spans
more package names (e.g. javax.realtime and javax.safetycritical), package-private
visibility is not an option.

The SCJ specification specifies three compliance levels which applications and im-
plementations may conform to. Each level specifies restrictions on what APIs may
be used, with lower levels being strictly more restrictive than higher levels. The
@SCJAllowed() metadata annotation is introduced to indicate the compliance level
of classes and members. The @SCJAllowed() annotation is summarized in Tab 1.1
and takes two arguments.

Annotation Argument Values Description

@SCJAllowed
value

LEVEL_0

User-level.LEVEL_1

LEVEL_2

SUPPORT User-level, accessed by library.
INFRASTRUCTURE Library private.

HIDDEN Non-accessible.

members TRUE Inherit value by sub-elements.
FALSE

Table 1.1: Compliance LEVEL annotation. Default values in bold.

1. The default argument of type Level specifies the level of the annotation tar-
get. The options are LEVEL_0, LEVEL_1, LEVEL_2, SUPPORT, INFRA-
STRUCTURE and HIDDEN.

• LEVEL 0, 1 or 2 specify that an element may only be visible by those
elements that are at the specified level or higher. Therefore, a method
that is @SCJAllowed(LEVEL_2) may invoke a method that is @SCJAl-
lowed(LEVEL_1), but not vice versa. In addition, a method annotated

2 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

with a certain level may not have a higher level than a method that it
overrides.

• SUPPORT specifies a user-level method that can be invoked only by the
infrastructure code, the annotation cannot be used to specify a level of a
class. SUPPORT method cannot be invoked by other SUPPORT meth-
ods. SUPPORT method can invoke other user-level methods up to the
level specified by its enclosing class.

• INFRASTRUCTURE specifies that a method is API private. Therefore,
methods outside of javax.realtime and javax.safetycritical packages may
not invoke methods that have this annotation.

• HIDDEN denotes classes and methods that are hidden and can not be ac-
cessed both from the user and infrastructure code. No element with this
annotation can be accessed from the SCJ application or infrastructure.

The default value when no value is specified is LEVEL_0. When no annotation
applies to a class or member, it takes on value HIDDEN. The ordering on anno-
tations is LEVEL_0 < LEVEL_1 < LEVEL_2 < SUPPORT <INFRASTRUCTURE
< HIDDEN.

2. The second argument, members, determines whether or not the specified com-
pliance level recurses to nested members and classes. The default value is
false.

Overriding the Default Level for User Classes

By default, any infrastructure and user code has the level set to HIDDEN. The default
value for the user-level code can be overriden by a command-line argument -Alevel=
passed to the checker. The possible values of the argument are -Alevel=0, -Alevel=1,
and -Alevel=2, corresponding to LEVEL_0, LEVEL_1, and LEVEL_2 respectively.

Compliance Level Reasoning

The compliance level of a class or member is the first of the following:

1. The level specified on its own @SCJAllowed() annotation, if it exists,

2. The level of the closest outer element with an @SCJAllowed() annotation, if
members = true,

3. HIDDEN.

16 May 2011 Version 0.79
Confidentiality: Public Distribution

3

Safety-Critical Java Technology Specification

If a class, interface, or member has compliance level C, it may only be used in code
that also has compliance level C or higher. It is legal for an implementation to not
emit code for methods and classes that may not be used at the chosen level of an SCJ
application, though it may be necessary to provide stubs in certain cases.

It is illegal for an overriding method to change the compliance level of the overridden
method. It is also illegal for a subclass to have a lower compliance level than its
superclass. Each element must either correctly override the @SCJAllowed annotation
of the parent or restate the parent’s annotation. Intuitively, all of enclosed elements
of a class or member should have a compliance level greater than or equal to the
enclosing element.

Methods annotated HIDDEN or INFRASTRUCTURE may not be overridden in user
code. Methods annotated SUPPORT must be overridden by the user and the SUP-
PORT annotation must be restated.

Static initializers have the same compliance level as their defining class, regardless
of the members argument.

Class Constructor Rules

For a class that is annotated @SCJAllowed, all constructors have to be annotated
@SCJAllowed as well.

If a class has a default constructor, the constructor’s compliance level is that of the
class if the annotation has members = true, or HIDDEN otherwise.

Other Rules

The exceptions thrown by a method must be visible at the compliance level of that
method.

1.3 Annotations for Restricting Behavior

The following set of annotations is provided to express behaviors and characteristics
of methods. For example, some methods may only be called in a certain mission
phase. Others may be restricted from allocation or blocking calls. In both cases, the
restricted behavior annotation @SCJRestricted is used.

The SCJRestricted annotation has three attributes: mayAllocate, maySelfSuspend,
and value. The first two are boolean and the last takes an element of the Phase
enumeration.

4 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

When mayAllocate is true, the annotated method is allowed to perform allocation
or call methods that are also annotated @SCJRestricted(mayAllocate = true). If a
method is @SCJRestricted(mayAllocate = false), then all method that override it
must be @SCJRestricted(mayAllocate = false) as well. Only methods that are an-
notated @SCJRestricted(mayAllocate = true) may contain expressions that result in
allocation (e.g. at the source level new expressions, string concatenation, and auto-
boxing). The default value is true.

When maySelfSuspend is true, the annotated method may take an action that caused
it to block. If a method is marked @SCJRestricted(maySelfSuspend = false, then
neither it nor any method it calls may take an action causing it to block. The default
value is true.

A method annotated with value set to anything other than ALL in SCJRestricted, then
the method may only be called in the given phase.

The @SCJRestricted annotation may be set on a class, interface, or enumeration, in
which case it changes the default values for the methods on that class, interface, or
enumeration.

1.4 Annotations for Memory Safety

1.4.1 Definitions of Memory Safety Annotations

The three SCJ annotations for memory safety, summarized in Table 1.2, are as fol-
lows.

Scope Tree

A SCJ application contains a finite set of scoped areas, each scoped area has a name
and a parent. Scope names must be unique. The scopes and their parent relation must
define a well formed scope tree rooted at IMMORTAL, the distinguished parent of all
scopes.

@DefineScope Annotation

@DefineScope annotation is used to define the scope tree, it has two arguments,
the symbolic name of the new scope and of its parent scope. The annotation can
and must be used only on declaration of classes that have an associated scope (for
instance, subclasses of the MissionSequencer and Schedulable classes). For classes
implementing the Runnable interface:

16 May 2011 Version 0.79
Confidentiality: Public Distribution

5

Safety-Critical Java Technology Specification

Annotation Where Arguments Description
@DefineScope Any Name Define a new scope.

@Scope

Class Name Instances are in named scope.
CALLER Can be instantiated anywhere.

Field
Name Object allocated in named scope.

UNKNOWN Allocated in unknown scope.
THIS Allocated enclosing class’ scope.

Method

Name Returns object in named scoped.
UNKNOWN Returns object in unknown scope.

CALLER Returns object in caller’s scope.
THIS Returns object in receiver’s scope.

Variable

Name Object allocated in named scope.
UNKNOWN Object in an unknown scope.

CALLER Object in caller’s scope.
THIS Object in receiver’s scope.

@RunsIn Method
Name Method runs in named scope.

CALLER Runs in caller’s scope.
THIS Runs in receiver’s scope.

Table 1.2: Annotation summary. Default values in bold.

1. when used for enterPrivateMemory(), the class must be also annotated with
@DefineScope.

2. when used for executeInArea(), the class must be annotated with @Define-
Scope which refers to an already existing scope and mirrors the @DefineScope
annotation used to define this scope.

Furthermore, the @DefineScope annotation must be added to variable declarations
holding ScopedMemory objects. The annotation has the form @DefineScope(name="A",
parent="B") where A is the symbolic name of the scope represented by the object and
B is the name of the direct ancestor of the scope.

@Scope Annotation

@Scope annotations can be attached to class declarations to constrain the scope in
which all instances of that class are allocated. The annotation has the form @Scope("A")
where A is the name of a scope introduced by @DefineScope. All methods in the
class run in the specified scope by default.

Annotating a field, local or argument declaration constrains the object referenced by
that field to be in a particular scope.

6 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

Lastly, annotating a method declaration constrains the value returned by that method.

Inner classes that are static are independent from the @Scope annotation on the en-
closing classes, non-static inner classes must preserve and restate the @Scope anno-
tation of the enclosing class.

Scope IMMORTAL, CALLER, THIS, and UNKNOWN

The special scope name IMMORTAL is used to denote the singleton instance of
ImmortalMemory.

The CALLER, THIS and UNKNOWN scope values can be used in @Scope anno-
tations to increase code reuse. A reference that is annotated CALLER is allocated
in the same scope as the allocation context (more on the allocation context in Sec-
tion 1.4.2). Classes may be annotated CALLER to denote that instances of the class
may be allocated in any scope.

References annotated THIS point to objects allocated in the same scope as the re-
ceiver (i.e. the value of this) of the current method.

Lastly, UNKNOWN is used to denote unconstrained references for which no static
information is available.

@RunsIn Annotation

The @RunsIn annotation can be annotated on a method, it specifies the context for
that particular method, overriding any annotations on its enclosing type. This can
be used, for example, to annotate event handlers, which always execute its event
handling code in a different scope from which it was allocated. This annotation
follows the same form as @Scope.

An argument of CALLER indicates that the method is scope polymorphic and that it
can be invoked from any scope. In this case, the arguments, local variables, and return
value are by default assumed to be CALLER. If the method arguments or returned
value are of a type that has a scope annotation, then this information is used by the
Checker to verify the method. If a variable is labeled @Scope(UNKNOWN), the only
methods that may be invoked on it are methods that are labeled @RunsIn(CALLER).
@RunsIn(THIS) denotes a method which runs in the same scope as the receiver.

Default Annotation Values

For class declarations, the default value is @Scope(CALLER). This is also the an-
notation on Object. This means that when annotations are omitted classes can be
allocated in any scope (and thus are not tied to a particular scope). Local variables

16 May 2011 Version 0.79
Confidentiality: Public Distribution

7

Safety-Critical Java Technology Specification

Class Constructor FieldConstructor Parameters

@Scope(Name)
@RunsIn(Name)

@Scope(Name) @Scope(Name)
@Scope(Name)

@Scope(CALLER)
@RunsIn(CALLER)

@Scope(THIS)a @Scope(THIS)
@Scope(CALLER)

Class Method Local
Method Parameters Variable

@Scope(Name)

@RunsIn(Name)
@Scope(Name) @Scope(Name)

@Scope(Name)

@RunsIn(CALLER)
@Scope(CALLER) @Scope(CALLER)

@Scope(CALLER)

@Scope(CALLER)

@RunsIn(THIS)
@Scope(THIS)b @Scope(THIS)c

@Scope(THIS)

@RunsIn(CALLER)
@Scope(CALLER) @Scope(CALLER)d

@Scope(CALLER)

aWhere THIS refers to the enclosing class, a parameter from caller’s scope is expected to
be passed in.

bWhere THIS refers to the enclosing class, at the caller’s side the scope of the parameter
must be the same as the scope of the method invocation receiver.

cBecause the enclosing method is @RunsIn(THIS).
dBecause the enclosing method is @RunsIn(CALLER).

Table 1.3: Summary of default annotations for a class annotated with a named scope
and a class annotated as CALLER.

and arguments default to CALLER as well. For fields, we assume by default that
they infer to the same scope as the object that holds them, i.e. their default is THIS.
Instance methods have a default @RunsIn(THIS) annotation. The Table 1.3 summa-
rizes the values of default annotations for all the source-code elements. Consider the
following:

• For @Scope(Name) classes:
• The unannotated fields and method/constructor parameters of unanno-

tated types are by default @Scope(Name).
• Constructors are automatically annotated @RunsIn(Name).

• For @Scope(CALLER) classes:
• Constructors are automatically annotated @RunsIn(CALLER). This is the

only case when the @Scope(CALLER) annotation of the class has an ef-
fect on its body, in fact the class’ @Scope(CALLER) annotation is con-
sidered only during its instantiation.

8 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

• The unannotated fields and method/constructor parameters of unanno-
tated types are by default @Scope(THIS).

Note on the notation: The Table 1.3 includes the cases where the class annotation
is @Scope(Name). This not only means that the given annotation has a value of a
named scope but that this same value must match all the named scope values for
the corresponding lines of the table. For example, if the class is annotated @Scope
("S1"), where S1 is a name of a scope, then the default annotations on the class
constructors are @Scope ("S1") and @RunsIn ("S1"). The similar notation is adopted
in the remainder of this chapter, for every table containing a scope of a value Name,
the same scope value must match all the occurrences of the Name on the given line.

Static Fields and Methods

The static constructors are treated as implicitly annotated @RunsIn(IMMORTAL).
Static fields are treated as annotated @Scope(IMMORTAL). Thus, static variables fol-
low the same rules as if they were explicitly annotated with IMMORTAL. Every static
field must have types that are annotated @Scope(IMMORTAL) or are unannotated.

Static methods are treated as being annotated CALLER.

Strings constants are immutable and therefore are treated as CALLER.

Overriding annotations

The following rules apply for overriding of the memory safety annotations:

1. Class annotation overriding rules:

(a) @DefineScope annotation cannot be overriden nor restated.

(b) Subclasses must preserve the @Scope annotation. A subclass of a class
annotated with a named scope must retain the exact same scope name. A
subclass of a class annotated CALLER may override this with a named
scope.

(c) s, if the class that the method belongs to is annotated @Scope(s)

2. Method annotation overriding rules: Any @RunsIn annotation may be overri-
den. Further rules apply to upcasting of types that have overriden a @RunsIn
annotation, see Section 1.4.5.

16 May 2011 Version 0.79
Confidentiality: Public Distribution

9

Safety-Critical Java Technology Specification

1.4.2 Allocation Context

An allocation context of a method is a scope and its value is the first of:

1. CALLER, if the method is static,

2. s, if the method is annotated @RunsIn(s),

3. CALLER, if the method is annotated @RunsIn(CALLER),

4. s, if the method is annotated @RunsIn(THIS) and if the class that the method
belongs to is annotated @Scope(s),

5. s if the method has no annotation and the class that the method belongs to is
annotated @Scope(s),

6. THIS if the method is annotated @RunsIn(THIS) and if the class that the method
belongs to is annotated @Scope(CALLER) or has no annotation,

7. THIS.

For any given expression, its allocation context is the allocation context of the en-
closing method.

1.4.3 Dynamic Guards

Dynamic guards are equivalent of dynamic type checks. They are used to recover the
static scope information lost when a variable is cast to UNKNOWN. A dynamic guard
is a conditional statement that tests the value of one of two pre-defined methods,
allocatedInSame() or allocatedInParent() or, to test the scopes of a pair of references.
If the test succeeds, the check assumes that the relationship between the variables
holds. The parameters to a dynamic guard are local variables which must be final to
prevent an assignment violating the assumption. The following example illustrates
the use of dynamic guards.

void method(@Scope(UNKNOWN) final List unk, final List cur) {
if (ManagedMemory.allocatedInSame(unk, cur)) {

cur.tail = unk;
}

}

The method takes two arguments, one List allocated in an unknown scope, and the
other allocated in the THIS scope. Without the guard the assignment statement would
not be valid, since the relation between the objects’ scopes can not be validated stat-
ically. The guard allows the checker to assume that the objects are allocated in the

10 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

same scope and thus the method is deemed valid. Note that the parameters to allo-
catedInSame() and allocatedInParent() must be final, so that the variables cannot be
modified to violate the assumption.

1.4.4 Scope Concretization

The value of polymorphic annotations such as THIS and CALLER can be inferred
from the allocation context in certain cases. A concretization function translates
THIS or CALLER to a named scope where possible. For instance a variable annotated
THIS takes the scope of the enclosing class (if the class has a named scope). An
object returned from a method annotated CALLER is concretized to the value of the
calling method’s @RunsIn which, if it is THIS, can be concretized to the enclosing
class’ scope. and to a class that is enclosing the method corresponding to the given
allocation context. Therefore, let:
A scope concretization function conc(S,C,AC) if a function of of three parameters
where :

• S is a scope value,
• AC is the scope of a given allocation context,
• C is the scope of a class enclosing the given allocation context.

and returns one of the following:

• UNKNOWN if S has a value UNKNOWN,
• Name, where Name is some named scope, if either

• S represents the value Name,
• S is THIS and C is Name.

• THIS if S is THIS and C is CALLER.
• Name, where Name is some named scope, and S is CALLER and AC is Name.
• CALLER if S is CALLER and AC is CALLER,
• conc(THIS,C,AC) if S is CALLER and AC is THIS.

Note that :

• The concretization function does not necessarily yield a named scope.
• While CALLER can be concretized to THIS, the THIS scope can never be con-

cretized to CALLER.
• Concretization of the method’s @RunsIn and @Scope annotations is automat-

ically handled by the default annotations rules presented in Section 1.4.1. The
THIS scope is concretized to Name if the enclosing class has a @Scope an-
notation, otherwise stays THIS. The CALLER scopes on methods cannot be
further concretized.

16 May 2011 Version 0.79
Confidentiality: Public Distribution

11

Safety-Critical Java Technology Specification

Equality of two scopes

We say that two scopes are equal if they are identical after concretization. The
equality can be also denoted by the == operator.

1.4.5 Scope of an Expression

Every expression must have a scope, if the scope of an expression cannot be deter-
mined, the expression is deemed invalid.

The discussion in this section is based on the scope concretization rules presented
in Sec.1.4.4 and thus all the scope values discussed are already concretized to their
most concrete value (i.e. scopes THIS and CALLER cannot be further concretized to
a named scope).

1.4.2.1 Simple expressions

To determine a scope of a simple expression, we list all the possible cases in Tab. 1.5.
For a simple expression, the final scope of an expression is then determined as a
concretization function applied to a corresponding valid scope value of the basic
expression.

Simple Expression Result Scope
static expr. IMMORTAL

enum types IMMORTAL

string concatenation conc(CALLER)
string literal conc(CALLER)

this. or super. conc(THIS)
local variable Name/conc(THIS/CALLER)/UNKNOWN

Table 1.4: Scope of a basic expression.

Considering the table, note that:

• Local Variables:
• Local variables, unlike fields and parameters, may have no particular

scope associated with them when they are declared and are of a type that
is unannotated. We therefore bind the variable to the scope of the right-
hand side expression of its first assignment. In the following example

Integer myInt = new Integer();

12 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

if the containing method is @RunsIn(CALLER), myInt is bound to @Sco-
pe(CALLER) while the variable itself is still in lexical scope. In other
words, it is as if myInt had an explicit @Scope(CALLER) annotation on
its declaration.

• Once a scope is associated with a given variable, it cannot be changed.
For example, it would be illegal to have the following assignment in the
method body once myInt was already bound to @Scope(CALLER):

myInt = Integer.MAX_INT;
• String Concatenation: The concatenation of the two operand strings results

in a new string with a scope value of conc(CALLER). The scopes of the operand
strings do not have any influence on the scope of the resulting string.

1.4.2.2 Field access

Consider a field access expression e1.f, let:

• S1 be the scope of expression e1,
• S2 be the scope of the field f.

Then, the scope of an expression e1.f is S and all its possible values are listed in
Tab. 1.6.

S1 S2 S
THIS THIS THIS

Name1 Name2 Name2

Name THIS Name

CALLER THIS CALLER

any UNKNOWN UNKNOWN

UNKNOWN Name Name

UNKNOWN THIS UNKNOWN

Table 1.5: Scope of a field access expression.

1.4.2.3 Assignment expressions

Consider assignment expression e1= e2, let :

• S1 be the scope of expression e1, and
• S2 be the scope of expression e2.

Then this assignment expression is valid iff one of the following holds:

16 May 2011 Version 0.79
Confidentiality: Public Distribution

13

Safety-Critical Java Technology Specification

1. S1 == S2, or

2. S1 == UNKNOWN, or

3. If the expression e1 is in a form e3.f where
• e3 is an expression and f is a field, and
• S3 is the scope of the field access expression e3.f.

Then the assignment is valid iff:

(a) S3 == S2, or
(b) f is UNKNOWN and the expression is protected by the dynamic guard

MemoryArea.allocatedInParent(x.f,y), or
(c) e1.f is THIS and the expression is protected by the dynamic guard Mem-

oryArea.allocatedInSame(x.f,y).

1.4.2.4 Cast expression

A cast expression (C) e may refine the scope of an expression from an object anno-
tated with CALLER, THIS, or UNKNOWN to a named scope. For example, casting a
variable declared @Scope(UNKNOWN)Object to C entails that the scope of expres-
sion will be that of C. Casts are restricted so that no scope information is lost.
Therefore, consider a cast expression:

(A) e;
Let:

• the class A be declared as @Scope(S1) class A {...},
• the class B be declared as @Scope(S2) class B extends A {...},
• the type of the expression e be B,
• AC be the scope of the allocation context of the method enclosing the cast

expression.

then, the cast expression is valid iff one of the following applies:

• S1 == S2,
• S1 == CALLER and S2 == AC,

A scope of this cast expression is conc(S1).
@RunsIn overriding rule: The following rule related to overriding of the @RunsIn
annotation applies for casts:

• Cast is forbidden if the subtype overrides the @RunsIn annotation on a method
of the supertype and the method is not annotated SUPPORT.

14 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

1.4.2.5 Method invocation

Consider a method invocation e1.m(...,e2,...), let:

• AC be the scope of the allocation context of the caller,
• ACM be the scope of the allocation context of the invoked method m(),
• T be the scope of the expression e1,
• A be the scope of the expression e2,
• P be the concretized scope of the formal parameter from the method’s m()

declaration corresponding to the actual argument expression e2,
• SM be the concretized value of the @Scope annotation of the method m(),
• S be the scope of this method invocation expression.

Then, such a method invocation is valid iff I. and II. are valid, and the scope of a
method invocation is then determined by III.:

I. Method scope check: one of the following must be valid:

1. The method m is static, or

2. The scope ACM is parent to the scope AC and the method m() is annotated
@SCJRestricted(mayAllocate=false), or

3. One of the valid cases listed in the Table 1.7 applies.

ACM T AC
CALLER any any

Name any Name

THIS Name Name

THIS THIS THIS

THIS CALLER THIS

THIS CALLER CALLER

Table 1.6: Valid method invocation

Note the following:

(a) The cases where the ACM is CALLER or Name are trivial to resolve.

(b) The only non-trivial case is when the ACM == THIS and it cannot be
further concretized since its enclosing class is CALLER. In this case, T
== THIS or CALLER and the following applies:

i. if AC == CALLER, then:
A. If T == THIS then this is invalid method call.

16 May 2011 Version 0.79
Confidentiality: Public Distribution

15

Safety-Critical Java Technology Specification

B. If T == CALLER then this is valid because AC == T == CALLER
== THIS.

ii. If AC == THIS then this method call is valid since T == THIS ==
CALLER.

II. Method parameter check: assignment of method parameters must be valid,
therefore, one of the cases listed in Tab. 1.8 must apply.

P A AC T
Name Name any any

THIS Name any Name

THIS THIS THIS CALLER

THIS CALLER CALLER CALLER

THIS Name Name CALLER

THIS THIS any THIS

CALLER CALLER CALLER any

CALLER Name Name any

CALLER THIS THIS any

UNKNOWN any any any

THIS any any UNKNOWNa

aMust be guarded by a dynamic guard.

Table 1.7: Valid parameter assignment

III. Scope of a method invocation expression: For a valid method invocation ex-
pression, all the possible scope values S of such an expression are listed in Tab. 1.9.

SM T AC S
Name any any Name

THIS Name Name Name

THIS CALLER CALLER CALLER

THIS THIS or CALLER THIS THIS

CALLER any CALLER CALLER

CALLER any Name Name

CALLER any THIS THIS

UNKNOWN any any UNKNOWN

Table 1.8: Scope of a method invocation expression

1.4.2.5 Allocation expression

Consider an allocation expression new C(y), let:

16 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

• A is the scope of an expression y,
• P is a concretized scope of a formal parameter from the constructor declaration

corresponding to the actual argument expression y,
• AC is the scope of the allocation context of the method enclosing the allocation

expression.
• S is the scope of the class C.

Then this allocation expression is valid iff the following holds:

1. One of the following must hold:
• AC == S,
• S == CALLER (the class C can be instantiated anywhere).

2. Constructor parameter assignment must be corresponding to one of the valid
cases listed in Tab. 1.10.

P A AC
Name Name any

THIS or CALLER Name Name

THIS or CALLER CALLER CALLER

THIS or CALLER THIS THIS

UNKNOWN any any

Table 1.9: Valid parameter assignments in constructors.

and, the scope of an allocation expression is conc(S).

Further, the following rules apply in general for any field or variable declaration:

• A variable or field declaration, C x, is valid if the allocation context is the same
or a child of the @Scope of C. Consequently, classes with no explicit @Scope
annotation cannot reference classes which are bound to named scopes, since
THIS may represent a parent scope.

• By default, the allocation context of an array T[] is the same as that of its
element class, T.

• Primitive arrays are considered to be labeled THIS. The default can be overri-
den by adding a @Scope annotation to an array variable declaration.

1.4.6 Additional rules and restrictions

The SCJ memory safety annotation system further dictates a following set of rules
specific to SCJ API methods.

16 May 2011 Version 0.79
Confidentiality: Public Distribution

17

Safety-Critical Java Technology Specification

@Scope("M") @DefineScope(name="H", parent="M")
class Handler extends PeriodicEventHandler {

@RunsIn("H") @SCJAllowed(SUPPORT) void handleAsyncEvent() {
@Scope(IMMORTAL) @DefineScope(name="M", parent=IMMORTAL)
ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(this);
...
@DefineScope(name=IMMORTAL,parent=IMMORTAL) @Scope(IMMORTAL)
ImmortalMemory imm = (ImmortalMemory) ImmortalMemory.instance;

}
}

Figure 1.1: Annotating ManagedMemory object example.

MissionSequencer and Mission

The MissionSequencer must be annotated with @DefineScope, its getNextMission()
method has a @RunsIn annotation corresponding to this newly defined scope. Every
Mission associated with a particular MissionSequencer is instantiated in this scope
and it must have a @Scope annotation corresponding to that scope. Further, Mission-
Sequencer must have @Scope annotation corresponding to the parent scope defined
by the @DefineScope annotation.

Schedulables

Each Schedulable must be annotated with a @DefineScope and @Scope annotation.
There can be only one instance of a Schedulable class per Mission.

MemoryArea Object Annotation

The annotation system requires every object representing a memory area to be an-
notated with @DefineScope and @Scope annotations. The annotations allow the
checker to statically determine the scope name of the memory area represented by
the object. This information is needed whenever the object is used to invoke Memory-
Area and ManagedMemory API methods, such as newInstance() or executeInArea()
and enterPrivateMemory().

The example in Fig. 1.1 demonstrates a correct annotation of a ManagedMemory
object m. The example shows a periodic event handler instantiated in memory M that
runs in memory H. Inside the handleAsyncEvent method we retrieve a Managed-
Memory object representing the scope M. As we can see, the variable declaration
is annotated with @Scope annotation, expressing in which scope the memory area
object is allocated – in this case it is the IMMORTAL memory. Further, the @Define-
Scope annotation is used to declare which scope is represented by this instance.

18 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

EnterPrivateMemory() and ExecuteInArea() methods

Calls to a scope’s executeInArea() method can only be made if the scoped area is
a parent of the allocation context. In addition, the Runnable object passed to the
method must have a @RunsIn annotation that matches the name of the scoped area.
This is a purposeful limitation of what SCJ allows, since the system does not know
what the scope stack is at any given point in the program.

Calls to a scope memory’s enterPrivateMemory(size, runnable) method are only valid
if the runnable variable definition is annotated with @DefineScope(name="x",parent="y")
where x is the memory area being entered and y is a the allocation context. The
@RunsIn annotation of the runnable’s run() method must be the name of the scope
being defined by @DefineScope. The enterPrivateMemory() method cannot be in-
voked if the allocation context is CALLER.

newInstance()

Calls to a scope’s newInstance() or newArray() methods are only valid if the class
or element type of the array are annotated to be allocated in target scope or not
annotated at all. Similarly, calls to newArrayInArea() are only legal if the element
type is annotated to be in the same scope as the first parameter or not annotated at
all. The expression

ImmortalMemory.instance().newArray(byte.class, 10)

should therefore have the scope IMMORTAL. An invocation MemoryArea.newArrayIn-
Area(o, byte.class, 10) is equivalent to calling MemoryArea.getMemoryArea(o).newAr-
ray(byte.class, 10). In this case, we derive the scope of the expression from the scope
of o.

getCurrent*() methods.

The getCurrent* methods are static methods provided by SCJ API that allow applica-
tions to access objects specific to the SCJ infrastructure. The getCurrent*() methods
are:

• ManagedMemory.getCurrentManagedMemory(),
• RealtimeThread.getCurrentMemoryArea(),
• MemoryArea.getMemoryArea(),
• Mission.getCurrentMission(),
• MissionManager.getCurrentMissionManager(), and
• Scheduler.getCurrentScheduler().

16 May 2011 Version 0.79
Confidentiality: Public Distribution

19

Safety-Critical Java Technology Specification

Typically, an object returned by such a call is allocated in some upper scope; however,
there is no annotation present on the type of the object. To explicitly express that
the allocation scope of returned object is unknown, the getCurrent*() methods are
annotated with @RunsIn(CALLER) and the returned type of such a method call is
@Scope(UNKNOWN).

1.4.7 Validation

The first step to validation of these annotations requires the construction of a reach-
able class set (RCS), this is the set of all classes that may be manipulated by a SCJ
schedulable object. The RCS is constructed by starting with all classes that are anno-
tated @Scope and adding all classes that may be instantiated from run() methods and
methods called from run() methods. Therefore, to ensure a successful verification of
memory safety annotations, all the source files should be accessible and passed into
the checker at the same time.

We say that a SCJ application is valid if it contains only valid expressions according
to the rules described in Sec. 1.4.5 and Sec. 1.4.6.

Disabling Verification of Scope Safety Annotations

The verification of scope safety annotations can be disabled by a compilation param-
eter -AnoScopeChecks passed to the checker. In this case, only the level compliance
annotations and behavior restricting annotations are verified.

1.5 Level Considerations

These annotations apply to all levels.

1.6 API

1.6.1 Class javax.safetycritical.annotate.SCJRestricted

Declaration

@Retention(CLASS)
@Target({ TYPE, FIELD, METHOD, CONSTRUCTOR })
public @interface SCJRestricted

Methods

20 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

public Restrict[] value() default {ANY_TIME}
public boolean mayAllocate() default true
public boolean maySelfSuspend() default false;

Declaration

This annotation distinguishes methods that may be called only from a certain context
(e.g. CleanUp) or method that may be restricted to execute no memory allocation or
blocking.

1.6.2 Class javax.safetycritical.annotate.SCJAllowed

Declaration

@Retention(CLASS)
@Target({ TYPE, FIELD, METHOD, CONSTRUCTOR })
public @interface SCJAllowed

Description

This annotation distinguishes methods, classes, and fields that may be accessed from
within safety-critical Java programs. In some implementations of the safety-critical
Java specification, elements which are not declared with this annotation (and are
therefore not allowed in safety-critical application software) are present within the
declared class hierarchy. These are necessary for full compatibility with standard
edition Java, the Real-Time Specification for Java, and/or for use by the implemen-
tation of infrastructure software. The value field equals LEVEL_0 for elements that
may be used within safety-critical Java applications targeting levels 0, 1, or 2. The
value field equals LEVEL_1 for elements that may be used within safety-critical Java
applications targeting levels 1 or 2. The value field equals LEVEL_2 for elements
that may be used within safety-critical Java applications targeting level 2. Absence
of this annotation on a given Class, Field, Method, or Constructor declaration indi-
cates that the corresponding element may not be accessed from within a compliant
safety-critical Java application.

Methods

public Level value() default LEVEL_0

1.6.3 Class javax.safetycritical.annotate.Level

Declaration

public enum Level

LEVEL_0

16 May 2011 Version 0.79
Confidentiality: Public Distribution

21

Safety-Critical Java Technology Specification

LEVEL_1
LEVEL_2
SUPPORT
INFRASTRUCTURE
HIDDEN

Description

Provides a set of possible values for the @SCJAllowed annotation’s argument level.

1.6.4 Class javax.safetycritical.annotate.Phase

Declaration

public enum Phase

INITIALIZE
EXECUTION
CLEANUP
ANY_TIME

Description

Provides a set of possible values for the @SCJRestricted annotation value.

1.7 Rationale and Examples

It is expected that the metadata annotations will be checked at compile time as well
as at load time (or link time if class loading is integrated with the linking). Compile-
time checking is useful to provide rapid feedback to developers, while load or link
time checking is essential for ensuring safety. Virtual machines that use an ahead-
of-time compilation model are expected to perform the checks when the executable
image of the program is assembled. The virtual machine may omit memory access
checks for classes that have been successfully checked.

The scoped memory area classes extend Java to provide an API for circumventing
the need for garbage collection. In Java, the type system guarantees that every access
to an object is valid, the garbage collector only recycles objects that are not reach-
able. Since scoped memory is not garbage collected, it would be possible for the
application to retain a reference to a scoped-allocated object, and access the mem-
ory after the scope was reclaimed. This could lead to memory corruption and crash
the entire virtual machine. In order to ensure memory safety, the RTSJ mandates a
number of runtime checks on operations such as memory reads and writes as well
as calls to scoped memory enter() and executeInArea(). Exceptions will be thrown
if the program performs an operation that may lead to an unsafe memory access.

22 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

Practical experience with the RTSJ has shown that memory access rules are difficult
to get right because the allocation context is implicit and programmers are not used
to reasoning in terms of the relative position of objects in the scope hierarchy. In a
safety-critical context, these exceptions must never be thrown as they are likely to
lead to application failures. Validated programs are guaranteed to never throw any of
the following exceptions:

• IllegalAssignmentError occurs when an assignment may result in a dangling
pointer. In other words, it occurs when an attempt is made to store a reference
to an object where the reference is below the memory area in the scope stack.

• ScopedCycleException is thrown when an invocation of enter() on a scope
would result in a violation of the single parent rule, which basically states that
a scoped memory may only be entered from the same parent scope while it is
active.

• InaccessibleAreaException is thrown when an attempt is made to access a
memory area that is not on the scope stack (e.g., calling executeInArea() on
it).

1.7.1 Compliance Level Annotation Example

The following example illustrates application of the compliance level annotation on
a simple example. The example shows both user and infrastructure fragments of
source code, demonstrating the application of the compliance level annotations.

@SCJAllowed(LEVEL_0, members=true)
class MyMission extends CyclicExecutive {

WordHandler peh;

@SCJAllowed(SUPPORT) public void initialize() {
peh = new MyHandler(...); // ERROR
peh.run(); // ERROR

}
}

As we can see, all the elements of the example are declared to reside in a specific
compliance level. At the user domain, we define class MyMission that is declared to
be at level 0. Every level 0 mission is composed of one or more periodic handlers; in
this case, we define the MyHandler class. The handler is, however, declared to be at
level 1, which is an error. Furthermore, MyMission’s initialization method attempts to
instantiate a MyHandler object and consequently tries to execute its functionality by
calling PeriodicEventHandler’s run() method. However, the method is annotated as
@SCJAllowed(INFRASTRUCTURE), which indicates that it can be called only from
the SCJ infrastructure code.

16 May 2011 Version 0.79
Confidentiality: Public Distribution

23

Safety-Critical Java Technology Specification

@SCJAllowed (LEVEL_0)
public interface Schedulable extends SCJRunnable {

@SCJAllowed(LEVEL_2)
public ReleaseParameters getReleaseParameters();

}

@SCJAllowed(LEVEL_1)
class MyHandler extends PeriodicEventHandler {

@SCJAllowed(SUPPORT) public void handleAsyncEvent() {...}
}

@SCJAllowed(LEVEL_0)
public abstract class PeriodicEventHandler extends ManagedEventHandler {

@SCJAllowed(LEVEL_0) public PeriodicEventHandler(..) {...}

@SCJAllowed(LEVEL_0) // ERROR
public ReleaseParameters getReleaseParameters() {...}

@SCJAllowed(INFRASTRUCTURE) public final void run() {...}
}

Looking at the SCJ infrastructure code, the PeriodicEventHandler class implements
the Schedulable interface, both of which are defined as level 0 compliant. However,
PeriodicEventHandler is defined to override getReleaseParameters(), originally al-
lowed only at level 2. This results in an illegal attempt to decrease method visibility.

1.7.2 Memory Safety Annotations Example

The following user-level code snippet illustrated application of memory safety an-
notations. The example shows a user-domain source code fragment that defines a
MyMission class, where we explicitly declare a scope in which the mission is running
by @DefineScope(name="M",parent=IMMORTAL). Furthermore, mission’s handler
MyHandler is defined to be allocated in mission’s memory by @Scope("M"), while
running in its own handler’s private memory by @RunsIn("H"), defined by according
@DefineScope annotation.

@Scope(IMMORTAL) @DefineScope(name="M", parent=IMMORTAL)
@SCJAllowed(members=true) class MyMission extends CyclicExecutive {

@SCJAllowed(SUPPORT) public void initialize() {
new MyHandler(...);

}
}

24 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

@DefineScope(name="M", parent=IMMORTAL) @Scope("M")
@SCJAllowed(members=true) class CDMission extends Mission {

@SCJAllowed(SUPPORT) @RunsIn("M") void initialize() {
new Handler().register();
MIRun run = new MIRun();
@Scope(IMMORTAL) @DefineScope(name="M", parent=IMMORTAL)
ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(this);
m.enterPrivateMemory(2000, run);

}
}

@SCJAllowed(members=true)
@Scope("M") @DefineScope(name="MI", parent="M")
class MIRun implements SCJRunnable {

@SCJAllowed(SUPPORT) @RunsIn("MI") void run() {...}
}

Figure 1.2: CDx mission implementation.

@Scope("M") @DefineScope(name="H", parent="M")
@SCJAllowed(members=true) class MyHandler extends PeriodicEventHandler {

@SCJAllowed(SUPPORT) @RunsIn("H") public void handleAsyncEvent() {
ManagedMemory.getCurrentManagedMemory().

enterPrivateMemory(3000, new Run());
}

}

@Scope("H") @DefineScope(name="R", parent="H")
@SCJAllowed(members=true) class Run implements SCJRunnable {

@SCJAllowed(SUPPORT) @RunsIn("R") public void run() {...}
}

The user is also expected to define a new scope area any time code enters a child
scope. This is illustrated by the Run class that is allocated in MyHandler private
memory while running in its own scope. Note the annotations on the Run class, the
@DefineScope is used to define a new scope entered by the runnable, furthermore,
the @RunsIn annotation specifies the allocation context of the run() method. Notice
that the memory areas form a scope tree with the immortal scope in root.

1.7.3 A Large-Scale Example

In this section we present a Collision Detector (CDx) example and illustrate the use
of the memory safety annotations. The classes are written with a minimum number
of annotations, though the figures hides much of the logic which has no annotations
at all.

16 May 2011 Version 0.79
Confidentiality: Public Distribution

25

Safety-Critical Java Technology Specification

@DefineScope(name="H", parent="M") @SCJAllowed(members=true)
@Scope("M") class Handler extends PeriodicEventHandler {

Table st;

@SCJAllowed(SUPPORT) @RunsIn("H") void handleAsyncEvent() {
Sign s = ... ;

@Scope("M") V3d old_pos = st.get(s);
if (old_pos == null) {

@Scope("M") Sign n_s = mkSign(s);
st.put(n_s);

} else ...
}

@RunsIn("H") @Scope("M") Sign mkSign(@Scope("M") Sign s) {
@Scope(IMMORTAL) @DefineScope(name="M",parent="IMMORTAL")
ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(s);

@Scope("M") Sign n_s = ManagedMemory.newInstance(Sign.class);
n_s.b = (byte[]) MemoryArea.newArrayInArea(s, byte.class, s.length);
for (int i : s.b.length) n_s.b[i] = s.b[i];
return n_s

}
}

Figure 1.3: CDx Handler implementation.

The example consists of a periodic task that takes air traffic radar frames as input and
predicts potential collisions. The main computation is executed in a private memory
area, as the CDx algorithm is executed periodically; data is recorded in a mission
memory area. However, since the CDx algorithm relies on positions in the current
and previous frame for each iteration, a dedicated data structure, implemented in the
Table class, must be used to keep track of the previous positions of each airplane
so that the periodic task may reference it. Each aircraft is uniquely represented by
its Sign and the Table maintains a mapping between a Sign and a V3d object that
represents current position of the aircraft. Since the state table is needed during the
lifetime of the mission, placing it inside the persistent memory is the ideal solution.

First, a code snippet implementing the Collision Detector mission is presented in
Fig. 1.2. The CDMission class is allocated in a scope named similarly and implicitly
runs in the same scope. A substantial portion of the class’ implementation is dedi-
cated to the initialize() method, which creates the mission’s handler and then shows
how the enterPrivateMemory() method is used to perform some initialization tasks
in a sub-scope using the MIRun class. The ManagedMemory variable m is annotated
with @DefineScope and @Scope to correctly define which scope is represented by
this object. Further, notice the use of @DefineScope to define a new MI scope that
will be used as a private memory for the runnable.

26 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Safety-Critical Java Technology Specification

@SCJAllowed(members=true) @Scope("M") class Table {

final HashMap map;
V3d vectors [];
int counter = 0;
final VRun r = new VRun();

@RunsIn(CALLER) @Scope(THIS) V3d get(Sign s) {
return (V3d) map.get(s);

}

@RunsIn(CALLER) void put(final @Scope(UNKNOWN) Sign s) {
if (ManagedMemory.allocatedInSame(r,s)) r.s = s;
@Scope(IMMORTAL) @DefineScope(name="M",parent=IMMORTAL)
ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(this);
m.executeInArea(r);

}
}

@SCJAllowed(members=true) @Scope("M") class VRun implements SCJRunnable {

Sign s;

@SCJAllowed(SUPPORT) @RunsIn("M") void run() {
if (map.get(s) != null) return;
V3d v = vectors[counter++];
map.put(s,v);

}
}

Figure 1.4: CDx Table implementation.

The Handler class, presented in Fig. 1.3, implements functionality that will be pe-
riodically executed throughout the mission in the handleAsyncEvent() method. The
class is allocated in the M memory, defined by the @Scope annotation. The alloca-
tion context of its execution is the "H" scope, as the @RunsIn annotations upon the
Handler’s methods suggest.

Consider the handleAsyncEvent() method, which implements a communication with
the Table object allocated in the scope M, thus crossing scope boundaries. The Ta-
ble methods are annotated as @RunsIn(CALLER) and @Scope(THIS) to enable this
cross-scope communication. Consequently, the V3d object returned from a @Runs-
In(CALLER)get() method is inferred to reside in @Scope("M"). For a newly detected
aircraft, the Sign object is allocated in the M memory and inserted into the Table.
This is implemented by the mkSign() method that retrieves an object representing
the scope M and uses the newInstance() and newArrayInArea() methods to instantiate
and initialize a new Sing object.

The implementation of the Table is presented in Fig. 1.4. The figure further shows
a graphical representation of memory areas in the system together with objects al-

16 May 2011 Version 0.79
Confidentiality: Public Distribution

27

Safety-Critical Java Technology Specification

located in each of the areas. The immortal memory contains only an object repre-
senting an instance of the MissionMemory. The mission memory area contains the
two schedulable objects of the application – Mission and Handler, an instance repre-
senting PrivateMemory, and objects allocated by the application itself – the Table, a
hashmap holding V3d and Sign instances, and runnable objects used to switch alloca-
tion context between memory areas. The private memory holds temporary allocated
Sign objects.

The Table class, presented in Fig. 1.4 on the left side, implements several @Runs-
In(CALLER) methods that are called from the Handler. The put() method was mod-
ified to meet the restrictions of the annotation system, the argument is UNKNOWN
because themethod can potentially be called from any subscope. In the method, a
dynamic guard is used to guarantee that the Sign object being passed as an argument
is allocated in the same scope as the Table. After passing the dynamic guard, the
Sign can be stored into a field of the VectorRunnable object. This runnable is conse-
quently used to change the allocation context by being passed to the executeInArea().
Inside the runnable, the Sign is then stored into the map that is managed by the Table
class. After calling executeInArea(), the allocation context is changed to M and the
object s can be stored into the map. Finally, a proper HashMap implementation an-
notated with @RunsIn(CALLER) annotations is necessary to complement the Table
implementation.

28 Version 0.79
Confidentiality: Public Distribution

16 May 2011

Bibliography

29

	Java Metadata Annotations
	Semantics and Requirements
	Annotations for Enforcing Compliance Levels
	Annotations for Restricting Behavior
	Annotations for Memory Safety
	Definitions of Memory Safety Annotations
	Allocation Context
	Dynamic Guards
	Scope Concretization
	Scope of an Expression
	Additional rules and restrictions
	Validation

	Level Considerations
	API
	Class javax.safetycritical.annotate.SCJRestricted
	Class javax.safetycritical.annotate.SCJAllowed
	Class javax.safetycritical.annotate.Level
	Class javax.safetycritical.annotate.Phase

	Rationale and Examples
	Compliance Level Annotation Example
	Memory Safety Annotations Example
	A Large-Scale Example

