
 OPEN SAFETY-CRITICAL JAVA 	

Open Safety-Critical Java
Supported by NSF grant SHF: Specification and Verification of Safety Critical Java

Purdue’s team cooperates with key software vendors and the JSR-302 expert group
on a new standard for Safety-Critical Java systems. With the goal to develop
applications and infrastructures amenable for certification under safety-critical
standards, the team provides the first open-source Java implementation
suitable for the domain of safety-critical software systems.

Software reliability is a major issue for
real-time systems, many of which are
safety critical. Java brings a plethora of
modern language features that make
software engineering more cost-effective
and safe, and it is thus an appealing
platform for safety-critical applications.

Fig. 1: The first integrated real-time Java system:
Purdue’s OVM on the ScanEagle

The JSR-302 expert group was formed to
define a new standard — the Safety-
Critical Java (SCJ) Specification. The
specification is designed to enable the
creation of applications, infrastructures,
and libraries that are amenable to
certification under safety-critical standards
(such as DO-178B, Level A).

 Purdue’s Open SCJ team is heavily
involved in the standardization process.
An open source implementation of the
standard is being developed at Purdue.
The goals of the OpenSCJ project are:

✦ A SCJ virtual machine

✦ A technology compatibility kit for
compliance testing of implementations

✦ Benchmarks for evaluating performance

✦ A static checker

Safety-Critical Java
The driving design principles in SCJ
Specification are reduction of system’s
complexity and cost of certification.

An SCJ compliant application will
consist of one or more missions, where a
mission consists of a bounded set of
periodic event handlers. The thread model
is largely restricted to periodic and
asynchronous event handlers to simplify
the schedulability analysis. The concept of
missions and sub-missions leveraged to
higher levels reintroduces dynamic
features of the real-time Java in a safer
form. For each mission, a dedicated block
of memory is identified as the mission
memory. A set of scoped memories with
restricted hierarchy can be used for each
schedulable object. Heap memory is not
allowed. The simple motivation for this
restricted memory model is to allow static
analysis of the memory usage.

The complexity of safety-critical
software varies greatly, therefore, SCJ
defines three compliance levels to which
both implementations and applications
may conform. Level 0 provides a simple
cyclic executive model which is single
threaded and restricts the use of scoped
memory. Level 1 extends this model with
support for mult i - threading with
asynchronous event handlers and a fixed-
priority preemptive scheduler. Level 2
lifts all restrictions on threads and supports
nested missions. All levels limit the use of
reflection to safe patterns and prohibit
dynamic loading and heap allocation.

S A F E T Y - C R I T I C A L
SYSTEMS

A safety-critical system is a
system whose failure or malfunction
may result in: death or serious injury to
people, or loss or severe damage to
equipment. For those reasons, safety-
critical applications require an
exceedingly rigorous development,
validation, and certification process.

A growing complexity of safety critical
so f tware ca l l s for h i gh - l eve l
development technologies. To face this
challenge, various approaches to real-
time execution of Java have proven
their worth in numerous commercial
and defense applications. Finally, the
Real-time Specification for
Java has extended the Java platform
with a range of features needed for
real-time computing.

As the use of real-time Java has
become more widespread, the demand
for Java in real-time applications with
safety requirements has led to an effort
to define a new standard - Safety-
Critical Java Specification (JSR-302
under the Java Community Process).

PURDUE UNIVERSITY 	
 JANUARY 2010

http://en.wikipedia.org/wiki/Death
http://en.wikipedia.org/wiki/Death

OPEN SAFETY-CRITICAL JAVA 	

The compliance levels enable construction of variously
complex and multi-model safety-critical systems, reducing thus
the cost of their implementation and certification.

Safety-Critical Virtual Machine
Development of an SCJ compliant infrastructure is a non-
trivial task that comprises several challenges. Safety-critical
software runs on top of a compact SCJ library supporting
Level 0-2 compliant applications. The library itself is
communicating closely with a dedicated Virtual Machine
constructed to effectively support application execution.
Finally, the VM itself runs on top of a real-time operating
system - Fig. 2.

Fig. 2: Safety-Critical Java Infrastructure

The most challenging part of the oSCJ project represents
development of a Virtual Machine compatible with the
specification. The team currently develops a new VM based on
Purdue’s successful OVM. Furthermore, SCJ extensions for
industrial FijiVM are being developed in collaboration with
Fiji Systems LLC. Both VMs allow safety-critical experts to
configure the infrastructure to the operational requirements of
a particular mission, while emphasizing the performance of
the resulting system. To optimize the performance, SCJ code is
compiled to C.

Fig. 3: Target Platform: Xilinx FPGA running RTEMS/LEON3.

The target hardware platform for oSCJ project is Xilinx FPGA
board running RTEMS/LEON3 - Fig. 3. The board is used

both by NASA and ESA to execute satellite’s on-board
software (Venus Express Mission 2005, Dawn Mission 2007)
and provides a unique platform for extensive benchmarking
and evaluation of the oSCJ project.

Current Status
As soon as the certifying authorities accept JVMs that
implement SCJ, the use of Java will lead to higher productivity
in the development of safety-critical applications. Purdue’s
oSCJ project is on the way to be thus the first open-source
implementation in the field.

Currently, oSCJ project already provides the technology
compatibility kit and the static checker. Recent efforts are
focused on the development of a VM supporting Level 0
compliant applications. The Level 0 compliance brings a
simplified computation model that enables high optimization
of the whole infrastructure, achieving a minimal footprint and
a performance that is comparable even to C programs. The
first release of oSCJ VM is planed for 2010.

 MORE INFORMATION
PUBLICATIONS
[1] Java for Safety-Critical Applications, Hunt, Locke,
Nilsen, Schoeberl, Vitek, SAFECERT 2009.

[2] A Technology Compatibility Kit for Safety
Critical Java. Zhao, Tang, Vitek. JTRES 2009.

[3] Challenge Benchmarks for Verification of Real-
time Programs, Vitek, Kalibera, Parizek, Leavens,
Haddad. PLPV 2010.

CONTACT
Jan Vitek, jv@cs.purdue.edu
Gary Leavens, leavens@eecs.ucf.edu
Ales Plsek, aplsek@purdue.edu

PROJECT WEBPAGE
http://www.cs.purdue.edu/homes/plsek/soft/scj/

TEAM MEMBERS
Jan Vitek, Purdue University
Ales Plsek, Purdue University
Lei Zhao, Purdue University
Daniel Tang, Purdue University
Tomas Kalibera, Charles University
Veysel H. Sahin, Purdue University
Gary Leavens, University of Central Florida
Ghaith Haddad, University of Central Florida

PURDUE UNIVERSITY	
 JANUARY 2010

