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ABSTRACT
Failure handling and recovery represents a major hurdle in
the design and development of distributed systems. Such
systems perform coordinated interactions to recover from
failures which include component crashes, communication
failures, and local software errors. Session types have been
proposed as a means of enforcing that components com-
ply with interaction protocols. By verifying the interac-
tion of distributed components against protocol specifica-
tions, many subtle interaction defects can be caught stat-
ically. However, session types have been mostly limited to
enforce correct behavior of normal-flow interactions, or have
focused on all-or-nothing recovery. In this paper, we pro-
pose protocol types, a novel variant of multi-party session
types, for specifying normal and exceptional program flow in
real-life fault-tolerant distributed protocols. Protocol types
allow global reasoning about failures and recovery in a fine-
grained manner. We demonstrate the benefits of protocol
types through code quality and performance on distributed
protocols such as Shibboleth or two phase commit.

1. INTRODUCTION
As underlined by the continuously growing interest in data-

center-based cloud computing and the Internet of Things,
distributed software systems are on the rise. Programming
distributed systems, however, remains inherently difficult as
corresponding programs are structured from multiple com-
ponents that interact in complex manners, where communi-
cation and hosts may black out temporarily or permanently.
Indeed, partial failures — the real possibility that certain
components or interactions fail whilst the remaining ones
must still fulfill certain invariants — are the most challeng-
ing design and implementation concern of distributed sys-
tems. A recent example of such a partial failure occurred in
an Amazon data-center, eventually bringing several services
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like Instagram and Netflix to a halt [3]. Such partial failures
significantly increase the burden on developers.

Following the pioneering work of Takeuchi, Honda, and
Kubo [28], several approaches to automatically verifying that
components abide to protocols by design — so-called session
types [13, 29, 7, 16] — have been proposed to help develop
correct distributed software. Session types focus on a core
subset of distributed programs, namely the complex inter-
actions between distributed components where many faults
occur; by capturing such interactions, session types allow for
individual components to be verified against global protocols
in a way integrated with program compilation. However,
despite distributed message passing systems being cited as
motivating scenarios, both the theory and practice of ses-
sion types have focused more on features typical of concur-
rent, centralized setups, or on high-level programming mod-
els such as Web Services. As a result, there are a number
of limitations of session types that prevent their usage in
real-world distributed software, including

(1) limited failure handling mechanisms and

(2) hardwired communication channels with semantics which
do not match traditional network protocol stacks.

For example (1) session type incarnations typically support
only un-named failures [9, 10], and all-or-nothing recovery
for repeating an entire protocol [8] which does not allow for
proper handling of many partial failure scenarios; (2) in-
herited from process algebras where session types emanated
from, channels are first-class citizens to support session del-
egation and are shared between multiple receivers, which
yields semantics that correspond to message queues, a very
specific class of distributed messaging systems [5].

This paper thus introduces protocol types which can be
viewed as a variant of session types with a novel set of fea-
tures targeting core distributed protocols. Specifically, the
contributions of this paper are:

• An expressive model of failure handling in protocols
with features for fine-grained expressive handling of
both “environment-induced” failures and application-
level failures (“exceptions”). We define and illustrate
our resulting syntax and semantics through examples.

• A compiler for automatically verifying that interaction
upon partial failures in real-world protocols abides to
protocol type specifications.

• A detailed empirical study that shows that a fault-
tolerant program verified against protocols type re-
tains asynchrony in that it imposes less unnecessary
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Figure 1: Shibboleth discovery service protocol

coordination among protocol participants than attempts
to encode failures with basic session types. We further
show by code quality analysis the benefits of our fea-
tures for complexity of protocol types and code.

We motivate our protocol types in Section 2. Section 3
outlines their main features through examples. Section 4
discusses the design of these features and their semantics.
Section 5 presents the implementation of protocol types.
Section 6 evaluates them. Section 7 contrasts with related
work. Section 8 presents final conclusions and future work.

Additional information including a formal characterica-
tion of type-checking in a core programming language for
protocol types, further examples used in the evaluation, and
a description of advanced features can be found on our web-
site [1]. In the Appendix, we formalize the core of a program-
ming language supporting our protocol types, and present
type-checking of components’ local protocol types against
global protocol types, along with advanced features. A for-
mally characterizes our protocol types. B and C present
auxiliary definitions for our calculus. D discusses advanced
features, and E presents additional session type examples
used in the evaluation.

2. MOTIVATING EXAMPLE
To illustrate the benefits of protocol types consider the

case of Shibboleth [2], a federated identity solution that pro-
vides single-sign-on capabilities for clients accessing various
resources. Shibboleth can be viewed as a derivative of the
Kerberos [22] protocol, and is among the world’s most widely
deployed federated identity solutions, connecting users to
applications both within and between organizations. Shib-
boleth includes components acting in the roles of Identity
Provider (IdP), Service Provider (SP), and Discovery Ser-
vice (DS) in addition to clients. IdPs provide user infor-
mation, SPs provide access to secure content based on that
information provided by IdPs, and the DS provides a mech-
anism to seamlessly add or remove services and SPs.

p ro t o co l Sh i bbo l e t hRe sou r c eReque s t {
p a r t i c i p a n t s : C l i e n t , SP
// 1 . c l i e n t r e q u e s t s r e s o u r c e
C l i e n t −> SP : <HttpRequest>
// 2 . r e s pon s e i f c l i e n t a u t h o r i z e d
SP −> C l i e n t : <HttpResponse>

}

Figure 2: Global session type of the Shibboleth resource
request example

Table 1: Basic syntax for global session types
Basic session syntax Purpose

A−>B: <T> Send of message of type T from A to B

A :[...]∗ Loop with iterations controlled by A

A:{l1 :...,..., ln :...} Branch with different labels l1- ln
controlled by A

The discovery service protocol (DSP) for communicating
between a client and the DS involves communication be-
tween all components of the Shibboleth system, following
Figure 1. The DSP is composed of nine distinct steps. At the
present it suffices to know that at one stage of the protocol,
the client is authenticated with the single sign-on service and
is redirected to an SP to access a resource (arrow [1]). Fig-
ure 2 shows this part of the protocol with basic multi-party
session types (MPSTs) [4, 6, 11] which implicitly use one
asynchronous communication channel per participant pair.
Table 1 provides a syntax overview for such MPSTs. The
client issues a request to the SP (A −> B: <T> denotes the
sending of a value of type T from A to B) in the form of an
HttpRequest and waits for a corresponding HttpResponse.

In this part of the protocol, two inherent failure scenarios
that can occur are:

1. Although the client is authenticated, it might not be
authorized to access the requested resource.

2. The client’s authentication ticket may have expired,
and thus the client must request a new ticket in order
to gain access to resources at the SP.

There are different ways one can try to encode this with
session types. The first scenario for instance can be en-
coded as a special value in the HttpResponse, however hiding
the important distinction between success and failure. A
clearer alternative, presented in Figure 3, is to have a branch
guarded by the SP (SP: {...} ) to make the three options ex-
plicit: (a) the regular scenario (NoFailure branch) leads to
sending of the response; (b) the AuthorizationFailure aborts
the attempt (see 1. above); (c) the ExpiredFailure represents
the second above-mentioned failure scenario (see 2.). In this
case the client communicates with the IdP to obtain a new
ticket, and finally, indicates to the SP whether it wants to
retry by controlling the loop (Client : [...]∗ ) around the pro-
tocol. This possibility of retrying also applies to (b), where
the client might want to request a different resource instead.

Even this simple example illustrates several shortcomings
of explicitly encoding failure handling with session types,
an approach henceforth referred to as STX (session types
with explicit failure handling). First, adding failure sce-
narios adds substantial complexity and can lead to invalid
paths. For instance, the possibility of retrying necessitates
a loop around the entire session, which then also allows the
failure-free path (NoFailure) to be repeated despite success.
This is not in line with the intended protocol which ends
upon success. Second, efficiency has to be considered when
performing such an encoding. Even in the failure-free run —
which can be assumed to be the common case — there is du-
plicated and redundant communication. Once the session is
initiated, the first loop execution requires an additional mes-
sage to be sent by the client to all others. In addition, there
are now two messages — the branch label NoFailure (Line 8)
as well as the actual response (Line 8) — which have to be



1 p ro t o co l Robus tSh ibbo l e thRe sou r c eReque s t {
2 p a r t i c i p a n t s : C l i e n t , SP , IdP
3 C l i e n t : [ // loop f o r r e t r y i n g , i f f a i l e d
4 // c l i e n t r e q u e s t s r e s o u r c e
5 C l i e n t −> SP : <HttpRequest>
6 SP : { // branch guarded by SP
7 // r e s pon s e i f c l i e n t a u t h o r i z e d
8 NoFa i l u r e : SP −> C l i e n t : <HttpResponse >,
9 Au t h o r i z a t i o n F a i l u r e : , // unau tho r i z e d

10 E x p i r e d F a i l u r e : // t i c k e t e x p i r e d
11 // renew r e qu e s t
12 C l i e n t −> IdP : <HttpRequest>
13 // new t i c k e t
14 IdP −> C l i e n t : <HttpResponse>
15 }
16 ]∗
17 }

Figure 3: Global session type of the Shibboleth example
with failure handling

transmitted between the SP and the client. If we inverse this
last situation by having the SP send a HttpResponse which
encodes the failure notifications as special values, as sug-
gested at first, we can use the client as loop guard as follows
to replace Lines 5-15 in Figure 3:

C l i e n t −> SP : <HttpRequest>
SP −> C l i e n t : <HttpResponse>
C l i e n t : // branch guarded by c l i e n t

NoFa i l u r e : // no more messages needed
Au t h o r i z a t i o n F a i l u r e :
. . .

}

Besides losing clarity, the SP then inversely in the failure-
free run waits for an additional branch label NoFailure that
has to be sent by the client and received by the SP to pro-
ceed. Static or dynamic optimization might help in certain
cases [20] but one can not take that for granted.

Challenges. Our protocol types provide expressive support
for handling failures capturing both “environment-induced”
failures (e.g., host or communication failures) as well as
application-defined failures (“exceptions”). The main two
challenges in the design of our support are:

Simplicity. We are interested in few features that capture
a broad range of scenarios, and simplify global reasoning
for the programmer in the presence of partial failures.

Efficiency. Our design should not over-constrain the system
and hamper performance. In particular, we want to re-
tain the potential for asynchronous execution rather than
coupling components by coordination behind the scenes.

The biggest challenge comes from the seeming conflict be-
tween these two requirements. For instance, a facility which
allows to reason in terms of atomic protocol blocks and per-
forms automatic rollbacks upon failures in a transactional
style would probably be easiest to use for a programmer,
but such features are hard to implement efficiently at large
scale and thus can hamper the asynchrony underlying many
distributed systems.

In the following we describe our protocol types in more de-
tail along with semantics balancing these two requirements.

3. PRIMER
We first present our support for handling failures in pro-

tocol types through examples, including Shibboleth as well
as Two Phase Commit (2PC) [30]. Table 2 provides an
overview of our protocol type syntax.

Table 2: Basic syntax for global protocol types
Protocol syntax Purpose

A−>B: <T> | F1 | ... | Fn Send of message of type T from
A to B with possible failures F1-Fn

A: [...]∗ Loop, iterations controlled by A

A: {l1 :..., ..., ln :...} Branch with different labels l1- ln
controlled by A

try {...} handle(F1) {...} Failure handling unit with hand-
... handle(Fn) {...} lers F1-Fn

A: retry Retry of surrounding try block
controlled by A

3.1 Shibboleth
Figure 4 shows the scenario corresponding to Figure 3

from Section 2 expressed with our proposed features. In
short, message sends can now give rise to failures which are
addressed via explicit failure handlers. Branches and loops
do not have associated failures as these are captured by com-
munication within them. We use a notation which is similar
to the intuitive exception handling features in mainstream
programming languages like Java and C++. try ... handle

thus delimits a scope of failure handling, and several handle

clauses for different types of failures can be paired up with
a same try as usual.1 (In contrast, previous models con-
sidered unnamed exceptions and thus single handlers, pa-
rameterized by shared channels over which exceptions are
received [9, 10].) Here the SP can now immediately indicate
a failure of either type AuthorizationFailure or ExpiredFailure

— corresponding to the two failure scenarios of Section 2
respectively — as alternatives ( |) to sending a response. As
illustrated, the same message can yield different types of fail-
ures. In the case of a failure the execution moves forward to
the corresponding handler (handle (...) ). In contrast to the
two STX encodings of these scenarios shown earlier, the in-
tent is clear and there is no further need for communication
between the client and the SP in the failure-free path. Simi-
larly, the block terminates as it should and is not artificially
constrained to be within a loop with the hidden invariant
that the loop does not repeat upon success.

In many distributed protocols, retrying the protocol, or
relevant sub-protocol, is a necessary recovery mechanism.
In protocol types, retrying is thus supported by a corre-
sponding keyword. The notation A: retry denotes that the
next enclosing try {...} body may be repeated, and that the
decision to do so is taken by A. Making repetition a choice
rather than forcing it allows protocol types to avoid endless
repetition. Assigning the duty of choosing the “retry path”
to a particular participant is important for compile-time pro-
tocol verification and runtime enforcement, and is analogous
to the assignment of branching and looping decisions to spe-
cific participants classically done in session types.

1We avoid the keyword catch to denote handlers to avoid
confusion with the stronger (synchronous) semantics for ex-
ceptions in languages like C++ or Java.



p ro t o co l Robus tSh ibbo l e thRe sou r c eReque s t {
p a r t i c i p a n t s : C l i e n t , SP , IdP
t r y {

// c l i e n t r e q u e s t s r e s o u r c e
C l i e n t −> SP : <HttpRequest>
SP −> C l i e n t : <HttpResponse>
| Au t h o r i z a t i o n F a i l u r e | E x p i r e d F a i l u r e

} handle ( A u t h o r i z a t i o n F a i l u r e ) {
C l i e n t : r e t r y // might req . d i f f . r e s o u r c e

} handle ( E x p i r e d F a i l u r e ) { // t i c k e t e x p i r e d
C l i e n t −> IdP : <HttpRequest> // renew req .
IdP −> C l i e n t : <HttpResponse> // new t i c k e t
C l i e n t : r e t r y

}
}

Figure 4: Global protocol type of the Shibboleth resource
request example with failures

Note that, though not shown, any failure message can also
carry a value. For instance an ExpiredFailure could convey
the time of expiration: ExpiredFailure<long>.

3.2 Two Phase Commit
Next consider the popular Two Phase Commit (2PC) pro-

tocol [30] used to decide on the outcome of distributed trans-
actions executing across several servers. 2PC has several
limitations, especially in an asynchronous failure-prone sys-
tem assumed here, such as the dependence on a central coor-
dinator [27, 15]. The goal here is not to debate these issues
or possible solutions (e.g., coordinator replication). Figure 5
outlines a simplified version of such a protocol, encoded with
our protocol types. For simplicity we focus on the case of
two participants — which may fail — as that is enough to
illustrate what we need, as also argued by Skeen and Stone-
braker [27]. Malou et al. [11] deal in detail with sessions
with parameterized (numbers of) participants.

Faithfully to the 2PC protocol, a TwoPC protocol type in-
stance kicks off by having the coordinator send the identifier
of a transaction (long) whose outcome (abort or commit) is
to be voted upon by all participants. The coordinator waits
for votes from each participant (true for commit, false for
abort), based on which the coordinator sends the final deci-
sion to all participants. (Given the independence of the two
sends from and to the coordinator respectively these can pro-
ceed in parallel.) Any other voting outcome than a unani-
mous commit (commit votes from all participants) must lead
to aborting the transaction. If the coordinator times out on
any of the responses then the protocol proceeds with the
corresponding handle clause, leading to abort. In contrast to
the previous examples, TimeoutFailure is raised by the “envi-
ronment”, which means that the runtime raises it. This is
no different than a RemoteException in Java’s remote method
invocations which needs to be added to every remotely in-
vocable method to convey errors like ConnectionExceptions, or
SOAPExceptions in Web Services. With protocol types this is
supported by declaring the corresponding failure as a sub-
type of a built-in InfrastructFailure .

In an asynchronous distributed system a TimeoutFailure

does not necessarily imply a participant crash, and so we
asynchronously notify both participants of the abort regard-
less of failures. The 2PC example points to the importance
of choosing the semantics for failure handling. The coordina-
tor always performs the same two sends of decisions to both

1 p ro t o co l TwoPC {
2 p a r t i c i p a n t s : Coord , Part1 , Part2
3 Coord −> Part1 : <long>
4 Coord −> Part2 : <long>
5 t r y {
6 Part1 −> Coord : <bool>
7 | Timeou tFa i l u r e
8 Part2 −> Coord : <bool>
9 | Timeou tFa i l u r e

10 Coord −> Part1 : <bool>
11 Coord −> Part2 : <bool>
12 } handle ( T imeou tFa i l u r e ) { // abo r t to a l l
13 Coord −> Part1 : <bool>
14 Coord −> Part2 : <bool>
15 }
16 }

Figure 5: Global protocol type for the 2PC protocol with
failure handling

participants, regardless of failures. Thus from the perspec-
tive of these participants there is no difference to replacing
the entire try ... handle block on Lines 5-15 simply with

Part1 −> Coord : <bool>
Part2 −> Coord : <bool>
Coord −> Part1 : <bool>
Coord −> Part2 : <bool>

This would also avoid sending a failure message and an
abort decision to participants in case of failure. The net dif-
ference, however, is that the coordinator can get stuck wait-
ing for a vote from a participant which indeed failed. Based
on the semantics expressed inherently with the example of
Figure 5, a timeout on either participant constrains the co-
ordinator to proceed to the handle clause. It also implies
that any non-faulty participant knows to not expect two
messages. In other terms they too proceed to the handler.

4. DESIGN
Next we discuss our design choices, with focus on syn-

chronization and nesting. For brevity, we introduce small
abstract examples.

4.1 Synchronization
Following the high-level presentation of failure semantics

in the previous section, an obvious question is to ask un-
der what conditions exactly participants occurring within
a try {...} body skip forward to the corresponding handle

clause, and when they do so. If a failure at any given point
in such a try {...} body would immediately lead to abort-
ing all subsequent communication in the body then that
would trivially mean that all such communications would
have to be guarded by the absence of failure. This would
imply strong synchronization at runtime between recipients
of failure-prone communications, senders, and receivers of
any depending follow-up communications.

To not hamper asynchrony and thus efficiency, the basic
semantics adopted for protocol types is to have failure noti-
fications follow the flow of communication. That means that
upon failure in a given try ... handle block all communication
causally depending on the failed communication in that block
is immediately aborted. Causal dependence follows the usual
definition of causal ordering of events [19]: (a) a send from
a participant causally precedes any subsequent send by that



participant, (b) a message send causally precedes its recep-
tion, and (c) if we have send or receive events e1, e2, e3 such
that e1 precedes e2 and e2 precedes e3, then e1 precedes e3.

From a participant P’s perspective, this means that if P is
on the receiving end of a causal chain of messages (m1, ...,mn

s.t. ∀i ∈ [1..n]mi =Pi−>Pi+1 : ... , ∀i < j ∈ [1..n] mi oc-
curs before mj , and Pn+1 =P) within a try ... handle block
which starts at a transmission which can yield a failure (i.e.,
m1 =P1−>P2 : ... | F) then P is subject to being rolled for-
ward to the corresponding handle (F) handler. Conceptually
this does not add communication, as the failure notification
or its absence, inherently, can be propagated along the usual
communication path; in practice the failure notification can
be sent directly to all targets though.

Other participants involved in a given try ... handle block
whose communication is not in the causal extension of a
given failure, on the other hand, can proceed with their re-
maining communication inside the try {...} body before be-
ing informed of the failure. We believe this is the right
amount of synchrony and provides the programmer with
most flexibility. Indeed, since the communication of such
participants is not causally depending on failure-prone inter-
actions, neither their success nor failure depends on those,
so in any case they can proceed asynchronously until the
point of synchronization at the end of the try {...} body. If
no such synchronization is desired at all, then, given the
independence of the said communication from the failure-
prone parts, the programmer can also move them outside of
the block; if they are failure-prone themselves they can be
wrapped in their own try {...} block. For illustration con-
sider the following abstract protocol fragment:

1 t r y {
2 A −> B: <T1> | F
3 C −> B: <T2>
4 } handle (F) {
5 . . . D . . .
6 }

Here the second send from C to B at Line 3 does not
depend on the first send at Line 2. In the case of a failure
F occurring at Line 3, the second send can thus proceed.
(If one wanted to precondition that send upon the success
of the first one, then a communication between B and C or
possibly A and C would have to be inserted between Lines 2
and 3). As mentioned, since the second send at Line 3 does
not causally depend on the first, the programmer can move it
out of this try ... handle block, placing it either before or after.
Inversely, if the programmer puts them together, he/she is
expressing an “atomicity” constraint. Here this means that
all participants may have to be eventually informed of an
exception or its absence depending on any follow-up actions
(e.g. in the failure handler).

Note that there is a difference between environment-induced
and application-defined failures: the sender of a correspond-
ing communication in the former case is not explicitly raising
a failure notification and may not be aware of it — as is the
case with TimeoutFailures in the 2PC example. As such, it is
not considered for determining the set of causally depend-
ing participants and communications; only the receiver is
considered, respecting the asynchronous nature of commu-
nication. There are two additions to these basic semantics
which add flexibility. Any participant D which does not ap-
pear in a try {...} but appears in a given handle(F) clause,
upon a F failure, will be informed like the other dependent

participants in the body; D has to be informed in any case of
the failure to participate in recovery actions. A second ex-
emption is discussed in the context of advanced features D.

4.2 Nesting
Our model of protocol failures also supports nesting, in

the sense that any try {...} block or handle ...{...} clause can
contain another try ... handle. The rules for nested handling
and propagation of failures/failure notifications is analogous
to the rules for exception handling within method bodies in
languages like Java or C++ (and not like the rules for prop-
agation through nested method calls). That is, any failure
which does not have a corresponding handle clause attached
to its immediately surrounding try is propagated one scope
outwards etc. If a given failure is not addressed by a corre-
sponding handler within any enclosing scope, the protocol
type is ill-formed and will be rejected by the compiler.

Nesting is orthogonal to our synchronization semantics,
or put differently, composes straightforwardly with it. For
deciding which participants to synchronize upon a given
failure, all participants in the corresponding try {...} body
are namely considered, which includes any participants in a
nested try {...} block. Inversely, for any failure F not handled
by any handle {...} clause of such a nested try, we consider
the participants in the causal extension of the raising of F

for determining the set of participants depending on the F

after that nested try. Consider the following example:

1 t r y {
2 A −> B: <T1> | F1
3 t r y {
4 B −> C : <T2> | F2
5 B −> D: <T3> | F3
6 } handle ( F2 ) {
7 . . .
8 }
9 D −> A: <T4>

10 C −> A: <T5>
11 } handle ( F1 ) {
12 . . .
13 } handle ( F3 ) {
14 . . .
15 }

Upon a failure of type F1 at Line 2 the remainder of the
protocol trivially gets aborted as all the other sends causally
depend on it. Upon a failure F2 at Line 4, Line 5 is skipped,
but Lines 9 and 10 are executed, as the failure F2 is han-
dled “locally”, which presumes that all invariants required
for subsequent actions — as is common with exception han-
dling — can be restored. Lastly, if a failure of type F3 is
raised at Line 5, then the send at Line 9 will not take place
as it causally derives from the failed send at Line 5. Thus,
after the nested failure handler, we have “unfinished busi-
ness” with F3. Inversely, the send at Line 10 can take place,
since all its causal antecedents (Lines 2 and 4) succeeded.

4.3 Retrying
Consider the previous example. One possibility to estab-

lish the invariants required for continuing the protocol at
Line 9 after a failure of type F2 occurred at Line 4 is to
retry that nested (sub)protocol. As in the Shibboleth ex-
ample presented in Section 3.1 (see Figure 4), this can be
achieved by implementing the handle(F2) clause with B: retry

such as to trigger a retry guarded for instance by B with
the obvious meaning that the entire inner try {...} block is



re-attempted. The following thus replaces Lines 3-8 in the
previous example:

t r y {
B −> C : <T2> | F2
B −> D: <T3> | F3

} handle ( F2 ) {
B: r e t r y

}

It is important however to note that a retry can fail again
and/or the participant guarding it can choose to not retry.
The programmer is in that case, as always, still responsible
for establishing any invariants necessary for any continua-
tion of the protocol (e.g., for Lines 9 and 10 above). There
is no implicit propagation of the handled failure in the case
of a declined retry. Thus retrying is not a panacea, it’s
a feature that relieves the programmer from the burden of
writing loops presented in the STX encoding of the Shibbo-
leth example in Section 2 (see Figure 3), and ensuring that
certain internal paths within such a loop reflecting success
can not lead to retrying the loop.

The retry in a handle(F ){...} body implicitly involves all
participants appearing in the corresponding try {...} body
in the recovery action. Thus in terms of synchronization,
the first exemption to the basic semantics presented in Sec-
tion 4.1 above applies here.

Introducing a dual primitive A: abort to the retry, which, if
triggered, would skip any follow-up actions in a correspond-
ing handler, on the other hand seems less useful, as it can
be trivially implemented by a conditional branch guarding
such follow-up actions. However, we discuss advantages of
primitives for abort (and retry) sensitive to nesting as part
of advanced features in D.

5. IMPLEMENTATION
Protocol types are implemented on top of the SessionJ 2

session types compiler and our previous work on the STing
extension [1, 25, 26] to SessionJ. The SessionJ compiler sup-
ports bi-party interactions [18] and is written using the Poly-
glot [23] compiler framework. The compiler takes as input
a session type specification as well as source files. SessionJ
typechecks the input program against the session type spec-
ification and instruments the code with calls to the SessionJ
runtime. The result is passed to a standard Java compiler.

To implement protocol types we first extended the Ses-
sionJ compiler to support MPSTs to allow for more inter-
esting communication protocols to be constructed and then
introduced our failure handling features. The input to our
extended version of SessionJ, called ProtocolJ, is a non-
standard Java file that contains a protocol type specification
as well as a component implementation that utilizes the pro-
posed language extensions. Just like SessionJ, ProtocolJ’s
output is a standard Java file that can be compiled using a
standard Java compiler. The stages of the compilation pro-
cess in ProtocolJ are described in Figure 6. Our compiler
supports Java 4 collections but currently does not support
generic types, since SessionJ uses a Polyglot version that
does not support Java 5 generics. We are currently working
on support for generic types can be achieved by upgrading
the compiler to the newest release of Polyglot that has sup-
port for generic types.

In the parsing stage ProtocolJ processes the input file and

2http://code.google.com/p/sessionj/.

Input File Parser Type Checker CCFG

Code 
TranslationOutput FileJava 

Compiler

Executable ProtocolJ 
Runtime
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Figure 6: Work flow of ProtocolJ compilation process

protocol type specifications and constructs a global protocol
structure and the AST for the input file. ProtocolJ synthe-
sizes local protocol types for each participant from the global
protocol type by projection (see C for formal specification).

The type-checking phase of the compiler verifies that the
implementation of each participant conforms to its role as
specified by the local protocol type. This includes checking
that messages of the correct types are communicated with
the correct participants at all protocol points. Moreover, the
type checker uses type information to verify that failures
specified in the protocol are handled properly, that is, all
failures are handled at the points specified by the global
protocol and their handlers implement a recovery protocol
as specified by the global protocol type. The type checking
algorithm is formalized and detailed in Appendix A.3.

To make sure that participants are correctly notified of
failures and execute appropriate handlers, the compiler in-
jects synchronization messages. These are determined by
the synchronization inference and injection stage. The com-
piler first constructs a concurrent control flow graph (CCFG)
of the global protocol type and determines the synchroniza-
tion messages it needs to inject into the global protocol in
order to notify participants of potential failures at the de-
termined synchronization points. The compiler then injects
message send and receive function calls to the runtime into
the AST to automatically notify the participants that need
to be notified of potential failures. Synchronization messages
are inserted with one message send for each participant that
needs to be notified of the failure (see [1]). After this, the
compiler translates the AST into a standard Java file.

5.1 ProtocolJ Runtime
The compiler package includes runtime libraries that sup-

port message communication, synchronization and failure
handling. At the beginning of the protocol execution the
runtime automatically connects all distributed components
to each other by deciding which components expect connec-
tion requests from which components in a way that avoids
deadlocks. The runtime provides a set of API functions that
enable the programs to exchange data messages (serializable
Java objects), control messages (such as loop and branch de-
cisions) as well as synchronization and failure messages.

The message communication portion of the runtime pro-
vides a set of functions to exchange data and control mes-
sages between participants. These include send and receive,
which are used to exchange data messages, inbranch and
outbranch, which are used to send and receive branch deci-
sion control messages, and inwhile and outwhile which are
used to communicate the decision over a next loop iteration.

Whenever a failure occurs at runtime the automatically in-
jected synchronization sends the necessary messages to the
participants that need to be notified of the failure. These
synchronization messages carry the type of the failure that
took place. On the receiving end, whenever the runtime re-



ceives a failure message, it automatically raises an exception
to move execution to the appropriate failure handler. More-
over, if execution proceeds normally without a failure at a
synchronization point the runtime automatically sends a“No
Failure”control message to any participants that would have
been notified of a failure if one had occurred. If a partici-
pant receives a “No Failure” message, it simply continues its
execution, representing the failure-free path of the protocol.

5.2 Static Synthesis of Synchronization
Concurrent control flow graphs. To automatically syn-
thesize and insert synchronization protocols the compiler
first must create a CCFG of the global protocol inferred
from the protocol type. To that end the compiler first syn-
thesizes a CFG for the global protocol type. The process
of constructing the CFG is close to standard and is carried
out as follows. First, the Start and End nodes are created,
then a node for each message and control structure in the
protocol is created. Two messages in the protocol are con-
nected if they represent a message sequence. A message
sequence is a series of message nodes with no interleaved
control structures. Branches and loops are constructed in
a way similar to standard CFGs with one distinction. A
branch or a loop node is considered to be a message send
from the branch or the loop guard to all other participants
since the branch label and the loop decision are sent to ev-
ery other participant in the protocol. For messages which
can potentially generate failures, an edge is added from the
message to the corresponding exception handler. Message
sequences are collapsed into basic blocks. A node with no
predecessor is connected to the Start node. Similarly, a node
with no successor is connected to the End node. Once the
CFG is generated, the compiler synthesizes a CCFG. Ba-
sic blocks in this CFG are split into concurrent component
blocks, blocks which have disjoint communicating partici-
pants within this basic block. Figure 7 illustrates how a
CFG and consequently a CCFG is generated for a simple
example. The first step in the figure represents generating
the CFG with all messages sequences collapsed into basic
blocks. The second step in the figure represents generating
a CCFG from a CFG by splitting basic blocks into concur-
rent blocks (represented by dashed lines).

Synchronization inference. The synchronization algo-
rithm uses the CCFG in order to determine the synchro-
nization message sends it needs to inject into the code. A
synchronization message sends from the source of a failure to
participant A is injected if one of the following three condi-
tions is met: (1) A is involved in a message whose execution
is directly or indirectly determined by whether the failure
occurs, (2) A appears in the failure handler as a part of
a communication message, and therefore must be notified
to move to the handler upon failure occurrence, or (3) A

appears anywhere in the try block and one of the block’s
handlers contains a retry operation, which means that all
participants that appear in the try block must synchronize
to the failure in order to be notified of a possible retry of the
protocol block. Condition (1) is checked on a per basic block
level. All participants within a basic block whose execution
is dependent on whether a failure occurs is notified of the
failure. Synchronization messages are inserted before each
regular message within a basic block, to notify the partic-
ipants engaged in that message. The last step in Figure 7
depicts the insertion of synchronization messages for each

message that occurs after a message with a potential failure
as well as all basic and control blocks in the CCFG that are
control dependent on the block in which the failure occurs.
Duplicate and unnecessary synchronizations are removed in
a cleaning pass. Consider the synchronization messages in-
sert in the last step in Figure 7, where X needs to notify Y,
prior to Y’s communication with X in the subsequent mes-
sage. Notice that we do not need to notify X as it implicitly
knows of the failure. This synchronization message, how-
ever, is spurious as Y is notified of the failure at the origin of
the failure. This synchronization message can therefore be
removed. Similarly, in the concurrent basic block, we inject
synchronization messages prior to B’s communication to C,
for both B and C. A message notifying B of the failure is not
necessary as we saw earlier and can be safely removed. Sim-
ilarly, C needs to be notified only once of the failure and the
second synchronization message can be removed. The re-
sulting basic block with synchronization messages removed
is given in the fourth step in Figure 7.

try{
"""X"$>"Y":<T>"|"Failure
"""A"$>"B":<T>"|"Failure
"""B"$>"C":<T>"
"""Y"$>"X":<T>"
"""B"$>"C":<T>
}"handle"(Failure)"{
""...
}

try

X"$>"Y":<T>"|"Failure
A"$>"B":<T>"|"Failure
B"$>"C":<T>"
Y"$>"X":<T>"
B"$>"C":<T>

...

try

X"$>"Y":<T>"|"Failure
Y"$>"X":<T>"

...
A"$>"B":<T>"|"Failure
B"$>"C":<T>"
B"$>"C":<T>

try

X"$>"Y":<T>"|"Failure
X"$>"Y":<sync>
Y"$>"X":<T>"

...A"$>"B":<T>"|"Failure
A"$>"B":<sync>
A"$>"C":<sync>
B"$>"C":<T>
A"$>"B":<sync>
A"$>"C":<sync>"
B"$>"C":<T>

A"$>"B":<T>"|"Failure
A"$>"C":<sync>
B"$>"C":<T>
B"$>"C":<T>

1

2

3

4

X"$>"Y":<T>"|"Failure
Y"$>"X":<T>"

4

Figure 7: CCFG creation and synchronization inference

6. EVALUATION
We illustrate the benefits of our protocol types empirically

both in terms of code quality and performance to gauge
simplicity and efficiency (see Section 2).

6.1 Synopsis
We consider six benchmarks programs: Shibboleth and

2PC outlined earlier, 3PC [27], and 1PC [30], as well as Cur-
rency Broker and Buyer-Seller-Shipper examples inspired
from previous work on session types with support for ex-
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Figure 8: State diagrams of Shibboleth discovery protocol

ception handling [9, 8]. Our extended report [1] provides
brief descriptions of 3PC and the Currency Broker as well
as the corresponding protocol types.

In the following we first assess the benefits of protocol
types in terms of code quality and type (protocol descrip-
tion) complexity by comparing them to STX versions. Then,
we also show that implementations based on protocol types
provide better performance than STX implementations in
that their execution is faster. For both code quality and
performance comparisons we also include program versions
obtained with session types that are agnostic to failures
(STA), i.e., that do not deal with failures. This gives us
a utopian baseline reflecting a world in which we need not
worry about failures. The versions obtained with our proto-
col types are in the following referred to as PT for brevity.

6.2 Code Quality
To demonstrate the simplicity of devising fault-tolerant

protocols with protocol types, we compare the quality of
(protocol/session) types and their corresponding implemen-
tations to those of STX and STA. We gauge programmer
effort by considering a number of statically determined code
characteristics (1) lines of code (LoC) for type descriptions,
(2) LoC for corresponding implementations, (3) nesting lev-
els in types, (4) “maximum number” of messages (i.e., num-
ber of messages in the longest failure-free communication
path), (5) number of distinct states (state here refers to
a group of protocol operations that form a basic block in
the protocol’s CFG), (6) invalid paths between states in the
protocol descriptions (i.e., paths permitted but not valid ac-
cording to the protocol), and finally, (7) duplicated LoC due
to explicit failure encoding (values for protocol types are al-

Table 3: Code metrics
Protocol Approach Type Code NestingMsgs States Inv. Dupl.

lines lines levels max. paths lines

1PC
STA 8 19 0 4 1 - -
PT 14 36 1 7 4 0 0
STX 16 59 4 12 6 1 8

2PC
STA 10 17 0 6 1 - -
PT 14 30 1 6 4 0 0
STX 19 59 4 9 5 1 14

3PC
STA 14 21 0 10 1 - -
PT 45 139 3 12 16 0 0
STX 49 184 9 18 26 1 23

Currency STA 13 34 1 7 3 - -
Broker PT 24 67 3 11 8 0 0

STX 22 68 4 14 8 0 0
Buyer Seller STA 14 38 1 8 3 - -

Shipper PT 19 55 2 8 8 0 0
STX 21 80 3 12 10 0 0

Shibboleth
STA 26 138 2 20 15 - -
PT 43 245 3 21 16 0 0
STX 42 272 3 43 20 2 0

ways 0). The last two are moot in the case of STA.
Table 3 summarizes the outcome of our static code qual-

ity evaluation. While the number of lines with PT (1) is
close between PT and STX as specifying handlers also re-
quires space, STX however leads to clearly increased num-
bers of LoC (2), and significantly higher nesting levels (3).
The number of messages in the longest failure-free path is
also clearly increased with STX (4); this is a hint to per-
formance overhead which will be validated shortly. Another
symptom is increased protocol complexity, which is demon-
strated through an increasing number of different states (5).
Figures 8a and 8b graphically illustrate this difference via
protocol state transition diagrams for the discovery protocol
of Shibboleth with PT and STX respectively. Notice that
NoIdPFailure does not increase the number of states with PT
as it is handled locally at the discovery service end. More-
over, we see that states 9 and 10 in Figure 8a are separate,
but they appear in a single state in Figure 8b. The reason is
that with protocol types the AuthenticationFailure is tied with
the HttpRedirect message, which means that this message
can potentially change the protocol execution path. In Fig-
ure 8b, however, the HttpRedirect message can be sent only af-
ter the execution path has been decided by the Authentication-
Failure branch path, and therefore message 9 is placed in the
failure-free path along with message 10.

The most substantial increase in states with STX occurs in
3PC. This is largely due to disjoint paths through the proto-
col and corresponds directly to the large increase in nesting
level and code duplication. Shibboleth in STX does not suf-
fer from duplication but instead from invalid paths like 1PC,
2PC and 3PC (6). All XPC implementations exhibit signifi-
cant code duplication (7) with STX. Figure 9 illustrates this
for 2PC at the type level. The Currency Broker shows the
least benefits for PT. We believe that this is largely due to
its simplicity and focus on (few) application-level failures.

6.3 Performance Characteristics
As mentioned, simplicity for programmers can be easily

achieved by proposing features which impose strong syn-
chronization. We show that the less simple STX approach
inversely adds much more overhead than PT. For our per-
formance evaluation we ran successive rounds of the various
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Figure 10: Average times required to complete successful iterations of different protocols vs failure probability

1 p ro t o co l TwoPCExpl ic i t {
2 p a r t i c i p a n t s : Coord , Part1 , Part2
3 Coord −> Part1 : <long>
4 Coord −> Part2 : <long>
5 Part1 : {
6 Timeou tFa i l u r e : // next 2 l i n e s d u p l i c a t e d
7 Coord −> Part1 : <Boolean>
8 Coord −> Part2 : <Boolean>
9 NoFa i l u r e :

10 Part1 −> Coord : <Boolean>
11 Part2 : {
12 Timeou tFa i l u r e : // next l i n e s dup l . 7−8
13 Coord −> Part1 : <Boolean>
14 Coord −> Part2 : <Boolean>
15 NoFa i l u r e :
16 Part2 −> Coord : <Boolean>
17 }
18 }
19 }

Figure 9: 2PC with STX

 

Figure 11: Normalized improvement of PT vs STX

protocols. All participants were executing on distinct ma-
chines as well as in distinct networks within campus with
1 - 3 hubs connecting each pair of networks. In these runs
we varied the percent probability that any given communi-
cation that could result in a failure would actually raise a

 

Figure 12: Overhead of PT and STX as compared to STA

failure notification. Thus as the percent probability of fail-
ures being raised increases, so does the number of times that
portions of the protocol must be re-executed to achieve full
completion of the protocol. The exponential trend of the
graphs of Figure 10 is due to the fact that these protocols
have more than one possible failure point. Thus as the fail-
ure probability increases for each of the failure points, the
probability of a successful protocol execution exponentially
decreases. All executions were repeated 10000 times and
averaged. As the figure shows, in all reasonable ranges of
failure probability PT clearly outperforms STX. For instance
with Shibboleth, when the percent probability of a failure
being raised at a communication point is 20% or below, PT
takes only about 60-70% of the time of STX. These benefits
are due to the absence of redundant messages which occur
with manual encoding of failures. We note that this mea-
surement approximates an upper bound on our performance
gains as the protocols primarily perform communication.

Figure 11 normalizes the improvements of PT over STX.
For instance with 2PC PT shaves off 9-22% of the time
used by STX. For 2PC, Currency Broker, and Buyer-Seller-
Shipper performance improvements of PT are consistent,
saving between 9% and 42% over STX. In failure-free runs,
PT only takes around 20% and 35% of the time STX takes
for Shibboleth and 1PC respectively. These performance
improvements come from a number of factors depending on



how protocols are implemented. For example, in the case of
the STX implementation of 2PC, all protocol paths incur ex-
tra branch decision control messages that are used to notify
the participants of whether or not a failure has occurred at
each communication that can fail in addition to the actual
sent message. In contrast PT implementations send either
the message (in the absence of failure) or a failure message.

A second source of spurious messages that appears in the
STX implementations is the way retries are implemented.
Retries are implemented in STX using session loops. These
add 2× (n−1) extra messages to the failure free path where
n is the number of participants in the protocol. The first
set of n − 1 messages are the control messages sent by the
loop guard to all participants to signal them to enter the
first iteration of the loop, in order to proceed with the exe-
cution for the first time. Then, at the end of executing the
subsession within the loop, an extra n− 1 control messages
are sent by the loop guard in order to signal whether to re-
execute the loop body or not. This type of overhead occurs
in STX for Shibboleth, Buyer-Seller-Shipper, 1PC, 2PC and
Currency Broker examples. With PT, the participants pro-
ceed to execute the subprotocol within the try block without
any exchange of messages. Moreover, retry control signals
are sent only when a failure occurs and the handler offers
the possibility of retrying the failure-prone subprotocol.

The third source of spurious messages is nesting. This is
best demonstrated by the STX version of 3PC. Due to the
deep nesting level, implemented using branch messages, the
performance of the failure-free path is hampered by n − 1
extra control messages for each nesting level: a branch guard
has to send a control message to each of the n−1 participants
to indicate whether or not a failure occurred.

The 1PC and 3PC protocols show interesting performance
trends. Because of the simplicity of the 1PC protocol we see
little performance improvement with PT over STX. This
is because the number of spurious messages that are sent
are very few. Moreover, as the failure probability increases
the two implementations begin to converge and show sim-
ilar performance results. For 3PC, on the other hand, PT
shows consistent but humble improvements when the excep-
tion probability is below 60%. However, when the excep-
tion probability increases beyond the 60% point we see that
PT performance improvements significantly increase. This
is because the number of spurious messages exponentially
increases as the exception probability increases.

Last but not least, Figure 12 focuses on failure-free runs,
showing the overheads of PT and STX over STA. PT shows
no overhead except for Shibboleth (∼55%) and 3PC (∼22%).
In contrast, STX invariably incurs between∼22% (2PC) and
∼152% (Shibboleth) overhead.

6.4 Threats to Validity and Discussion
We have shown that protocol types have advantages over

manual encoding in basic session types both in terms of (1)
simplicity and (2) efficiency on a range of different proto-
cols. Although the examples are relatively small, they span
a number of important protocol examples and families, and
involve different failure models. We have encoded all of the
examples in Java; however, we observe that most languages
will contain primitives for loops and branches, while the pro-
tocol type syntax itself is language-independent, and com-
plexity improvements for PT over STX can be generalized:
with STX, a sequence of n failure-prone sends m1, ..., mn

can translate to n nested branches, with the treatment of
mi+1, ..., mn being duplicated at branch i at a degree pro-
portionate to the number of different failures possibly oc-
curring upon mi, and every branch requires the sending of
a label which is redundant with the subsequent message or
failure. Furthermore, every loop introduced for retrying re-
quires an additional multi-sending upon first execution. All
of this translates to increased latency. Although the bench-
marks show good percent improvement in the runtime of the
protocols executed, we expect large, real-world systems to
not always exhibit such performance improvements due to
a lower ratio of communication to computation performed.
However, we note that the benefits afforded by protocol
types will be exhibited by reduced latency, a metric often
of equal importance to raw throughput.

Last but not least, even if protocol types yield high LoC
savings, we believe their main benefit lies in the reduction of
invalid paths compared to implementing retrying via loops –
these must be ruled out manually by the programmer which
defies the purpose of the typing approach.

7. RELATED WORK
Session types. Honda et al. [16] and Bonelli et al. [7]
extended the original bi-party session types to multi-party
interaction. Honda et al. conduct a linearity analysis and
prove progress of MPSTs. Linearity analysis in our system
is superfluous since each participant has an implicitly de-
fined, unshared, channel to every other participant. Bejleri
and Yoshida’s work [6] extends that of Honda et al. for syn-
chronous communication among multiple interacting peers.

Operational semantics for asynchronous session types were
first studied by Neubauer et al. [21]. Session types have been
applied to functional [13] and object-oriented settings [12,
18], as well as others. Gay et al. [14] focus on modular im-
plementation of sessions via objects. A Java implementation
of binary session types was introduced by Hu, Yoshida, and
Honda [18]; our implementation builds on it. Scribble [17]
is an ongoing project on a session type based language and
tool chain for large scale distributed applications.

Exception handling. Carbone et al. [9, 10] propose struc-
tured interactional exceptions for session types based asyn-
chronous communication. When a process throws an ex-
ception, execution is interrupted at all participants involved
in the conversation and they move to another dialogue. Ex-
ceptions can be nested through nested try blocks but raising
an exception is not permitted to occur within an exception
handler. The model supports only one kind of exception.

Hanazumi and Vieira de Melo [24] and Alexandar et
al. [31] describe a method for exception handling based on
Coordinated Atomic Actions (CAAs). Coordinated excep-
tion handling is achieved by satisfying a number of CAA
properties on transactions, namely rollback and exception
handling properties. When an exception is raised within a
CAA or signaled to it, the participants handle the exception
by executing the exception handling code for that CAA. If
the exception is not handled within the CAA, it is propa-
gated to other parts of the system. This method requires
substantial programming effort. Also, transactional guaran-
tees are not always needed or possible.

8. CONCLUSIONS AND OUTLOOK



To help the programmer combat partial failures in dis-
tributed systems we have proposed and presented protocol
types. We are exploring several extensions to our work, e.g.,
assigning different synchronization semantics with different
root failure and protocol types (subtyped by actual failure
and protocol types to inherit corresponding semantics), no-
tions of nested protocols to support different kinds of com-
munication channels instead of the hardwired “−>”.
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APPENDIX
A. LANGUAGE

To clarify the details of our model of protocol failures,
show how to use these features when implementing proto-
cols, and to define how we have implemented protocol type
verification we introduce a core calculus for multi-party pro-
tocol types with pair-wise channels and our primitives for
failure handling. We provide typing rules for local protocols
against global protocols after we introduce our language.

A.1 Syntax
The syntax and grammar of our core protocol type lan-

guage is given in Figure 13. We use metavariables P to range
over processes, p over process identifiers, e to range over ex-
pressions, v to range over values, l to range over labels, x to
range over variables, m over messages, and h to range over
choices – a pair consisting of a label and an expression. A
program state includes a collection of processes and a pro-
tocol map (S) which maps a given participant in a protocol
(p) to a list of its peers (p). Each process (P ) is composed of
a process identifier (p), and evaluation context (E [e]), and
a message map (M). A message map is a mapping between
process identifiers and a sequence of zero or more messages
(m). The message map represents a set of buffered, ordered
message stream indexed by a given process. There are two
types of messages: control messages, which represent coor-
dinated control flow within a protocol, and value messages,
raw sends of values between processes.

Our language contains primitives for sending values be-
tween participants in a protocol (send), receiving a value
from a participant in a protocol (recv), performing a branch
within a protocol (outbranch, inbranch), and looping within
a protocol ( inwhile , outwhile). Although it is not a part of
the language the programmer writes programs in, we pro-
vide a utility function that allows sending a given message
to a set of participants (send(p,m)). Similarly, we provide
a primitive that notifies a failure to a set of participants
(throw(p, e)). This set is determined by statically determin-
ing all targets for a failure notification from a protocol type.
Figure 20 in B defines the relation ; for performing this
identification.

Evaluation maps a program state to another. As we will
detail shortly, evaluation is specified via two relations (⇒,
⇒T ); the first represents the dynamic semantics of our MP-
STs without support for failures (⇒), and the second (⇒T )

focuses on failures as an extension corresponding to boxed
elements in Figure 13. All evaluation rules are applied up
to commutativity of parallel composition (‖). We leverage
evaluation contexts (E) to specify evaluation order.

A.2 Dynamic Semantics
There are eleven basic evaluation rules (⇒). The first

two rules, [IFT] and [IFF] respectively, define conditionals
and are standard. The first represents the choice of the
then branch and the second the choice of the else branch.
These two rules embody local control flow and do not directly
affect other participants within a protocol. The rule [MULTI

SEND] defines the behavior of our utility send function in
terms of a sequence of sends. The rule [SEND] places the
value being sent (v) in the map of the target process (p2).
Since our sends are both buffered and ordered we place the
value (v) at the end of the sequences corresponding to p1’s

stream in map M2. Note that the rule for sending a value
is thus global and atomic. The rule [RECV] simply removes
the first message from the map (M) for the target process
(p2). The next two rules deal with starting and ending a
protocol instance for a given participant.

The next four rules, [OB], [IB], [OW], [IW], define control
flow for protocols and rely on control messages being passed
between participants of the protocol. The rule [OB] and
its corresponding receiver side rule [IB] represent an n-way
choice. Each potential target for the choice is represented
by a label (l). The rule [OB] specifies on the receiver side
what branch target should be taken. A corresponding con-
trol message, comprised of the label (l), is sent to all other
participants (p2) in the protocol. Similarly the two rules
[OW], [IW] represent loops within a protocol. We define the
while loop in terms of a standard rewrite using replication
of the term and a branch. Notice that since this loop is
not local additional send primitives are replicated in both
branches. The then branch represents the decision to per-
form the loop and the else branch represents the decision
to terminate the loop. We leverage the booleans true and
false to represent the control messages for this decision re-
spectively. The rule [IW] defines the looping construct for
all other participants in the protocol. The looping predicate
is not evaluated, but instead received as a control message
from the specified participant (p2). In much the same man-
ner as [OW], the rule [IW] leverages replication and branches
to define the loop.

The last two rules deal with starting and ending a session
for a given participant. The rule [SESSION START] modifies
the session map (S) by placing a list of participants minus
the current process identifier in the session map. This for-
mulation allows us to quickly determine which participants
need to receive a control message for branching and loop
within a session. Conversely, the rule [SESSION END] clears
the session map.

To this core calculus for protocols we add support for fail-
ures. Extensions and changes to the syntax and grammar

are given in Figure 13 and denoted by boxes . We extend
the definition of a process to include a failure stack σ and
introduce a new failure notification value (exc(v)). Our for-
malism provides only one type of failure, but this failure
can carry values. We observe that through value carrying
failures we can encode different types of failures by casing
on the value within a handle block. Failures are notified
by evaluating a throw expression. Similarly, we introduce a
new expression form (try { e } handle(x : τ) { e }), which
defines a try block and a handle block. The variable x can
be accessed in the expression within the handle block and is
bound to the value carried by a failure that is handled by
this handler.

Evaluation for failures is specified via a relation (⇒T ) that
maps one program state to another. A program state is a
collection of processes extended with failure stacks (σ) and
a protocol map (S). Notice try and handle are omitted as
the evaluation rules define their evaluation explicitly.

Figure 15 defines the relation ⇒T through five rules (two
additional rules that supersede the rules [SEND] and [RECV]

are given in C as the changes are uninteresting). The rule
[PROC] defines the evaluation of a process (p1) in terms of
⇒. Notice that ⇒ at most reduces two processes. The rule
[TRY] installs a new failure handler on the stack of the pro-
cess p. The failure handler contains the continuation of the



Syntax:

S ::= φ | dp → p′eτ | dp → p′eτ | ] :τ ′ | S;S | T{S}C{S} | p 〈 ! µ.S〉 | p 〈! l;S〉

s ::= φ | ! dpeτ | ? dpeτ | ! dpeτ | ] :τ ′ | s; s | T{s}C{s} | ] dpeτ
| ! µ.s | ? dpe 〈µ.s〉 | ! l; s | ? dpe 〈l : s〉

P ::= φ | P‖P | p{e; M} | p{e; M}σ
v ::= true | false | unit | exc(v)

e ::= p | v | l | e; e | if e then e else e | begin(e) | end | send(p, e) | recv(p)

| outwhile(e, e) | inwhile(p, e) | outbranch(l, e) | inbranch(p, h)

| try { e } handle(x : τ) { e } | throw(p, e)

h ::= l : e

m ::= l | v | (v, i)

P ∈ Process l ∈ Labels
p ∈ ProcessIdentifier m ∈ Messages
e ∈ Expression x ∈ Variables
v ∈ Values h ∈ Choice

exc(v) ∈ Failure s ∈ LocalProtocolType

σ ∈ FailureStack S ∈ GlobalProtocolType
τ ∈ BaseType

M : Process → MessageList
S : ProcessIdentifier → ProcessIdentifierList

Evaluation Contexts:

E ::= • | if E then e1 else e2 | E ; e | v; E | send(p,E) | throw(p,E)

Figure 13: The syntax and grammar for our core language with message passing primitives.

try/handle expression (E), the handle expression e2, and
the variable for the handle (x) as well as the nesting level of
the try block (i). The evaluation context which represents
the continuation is removed from the expression. The rule
[TRY COMP] will install this evaluation context and pop the
failure handler from the stack. This rule defines the normal
control flow through a try/handle expression (i.e., no fail-
ure occurred). Notice that the rule [TRY COMP] creates
a synchronization point at the end of the try blocks for all
participants in the protocol instance. This guarantees that
if a failure is notified by a participant all participants will
receive it, either by rules [RECV EXC] or [ASYNC EXC].
The rule [THROW], abstractly, sends a failure notification
to a set of participants (p2) determined from the protocol
type (relation ; in Figure 20, B), and notifies the failure
to the current process. Thus, the expression of the most
closely enclosing handle is installed along with the continu-
ation of the try/handle expression stored within the failure
handler. The expression is rewritten so all occurrences of x
are replaced by the value carried by the failure. The rule
[RECV EXC] defines a non local failure raise via the instal-
lation of the continuation and handle expressions contained
with handler of the local process that receives the failure.
This rule is triggered only for the explicit receiver of the
failure, all implicitly notified participants will receive the
failure notification asynchronously via [ASYNC EXC]. Since
failure notifications can be delivered asynchronously mes-
sage maps must be cleaned appropriately for any unreceived
messages at this nesting level (i) or higher. We define an
auxiliary function Cl in C, which cleans M of all messages
tagged with the current nesting level or higher.

A.3 Typing Rules
The grammar for our protocol types with failures is given

in Figure 13. We use metavariables τ to range over base
types, s to range over local protocol types, and S to range
over global protocol types. A local protocol type can be a
send of a message of type τ to a participant p (! dpeτ ), a
receive of a message of type τ from participant p (? dpeτ ),
a new “or” type which defines the send of a message of type
τ or a failure ] with a value of type τ ′ to participant p
(! dpeτ | ] :τ ′), a sequence of local protocol types (s; s), a
try/handle type (T{s}C{s}), or a failure type which speci-
fies a target of participant p (] dpeτ ). Local protocol types
can also be in out while type (! µ.s4) or an in while type
(? dpe 〈µ.s〉). Similarly, they can also be an out branch
(! l; s) or an in branch (? dpe 〈l : s〉)

Global protocol types can be a communication type defin-
ing the flow of a message of type τ from participant p to
p′ (dp′ → peτ ), a communication type defining the flow
of a message of type τ or a failure from participant p to
p′ (dp′ → peτ | ] :τ ′), a sequence of global protocol types
(S;S), a try/handle type (T{S}C{S}), a type defining a
while loop (p 〈 ! µ.S〉), or a type defining a conditional
branch (p 〈! l;S〉).

Figure 16 defines our local protocol typing rules and Fig-
ure 17 presents the unification of “or” types (! dpeτ | ] :τ ′).
We introduce these since our model defines the flow of failure
notifications along with messages. Conceptually “or” types
are introduced by local branching control flow. Typing rule
[TYPE IF] states that a branch expression has a local proto-
col type s1; s4 if the predicate expression has type s1 under
the type environment γ and the then branch and else branch



[IFT]

p{E [ if true then e1 else e2]; M} ‖ P,S⇒ p{E [e1]; M} ‖ P,S

[IFF]

p{E [ if false then e1 else e2]; M} ‖ P,S⇒ p{E [e2]; M} ‖ P,S

[MULTI SEND]

p = p′ :: p′

p{E [send(p,m)]; M} ‖ P,S⇒ p{E [send(p′,m); send(p′,m)]; M}‖ P,S

[SEND]

M ′2 = M2[p1 7→M2(p1) :: v]

p1{E [send(p2, v)]; M1} ‖ p2{E [e]; M2} ‖ P,S⇒ p1{E [unit]; M1} ‖ p2{E [e]; M ′2} ‖ P,S

[RECV]

M(p2) = v :: v M ′ = M [p2 7→ v]

p1{E [recv(p2)]; M} ‖ P,S⇒ p1{E [v]; M ′} ‖ P,S

[OB]

S(p1) = p2
p1{E [outbranch(l, e1)]; M} ‖ P,S⇒ p1{E [send(p2, l); e1]; M} ‖ P,S

[IB]

(l : e) ∈ h M(p2) = l :: m M ′ = M [p2 7→ m]

p1{E [inbranch(p2, h)]; M} ‖ P,S⇒ p1{E [e]; M ′} ‖ P,S

[OW]

S(p1) = p2
p1{E [outwhile(e1, e2)]; M} ‖ P,S⇒

p1{E [ if e1 then send(p2, true); e2; outwhile(e1, e2) else send(p2, false )]; M} ‖ P,S

[IW]

M(p2) = v :: m M ′ = M [p2 7→ m]

p1{E [ inwhile(p2, e)]; M} ‖ P,S⇒
p1{E [ if v then e; inwhile(p2, e) else unit]; M ′} ‖ P,S

[SESSION START]

p1{E [begin(p2)]; M} ‖ P,S⇒ p1{E [unit]; M} ‖ P,S[p1 7→ p2/p1]

[SESSION END]

p{E [end]; M} ‖ P,S⇒ p{E [unit]; M} ‖ P,S[p1 7→ φ]

Figure 14: Operational semantics for a core protocol type calculus



[PROC]

p1{e1; M1} ‖ p2{e2; M2},S⇒ p1{e′1; M ′1} ‖ p2{e′2; M ′2},S′

p1{e1; M1}σ1 ‖ p2{e2; M2}σ2 ‖ P,S⇒T p1{e′1; M ′1}σ1 ‖ p2{e′2; M ′2}σ2 ‖ P,S′

[TRY]

||σ|| = i σ′ = (E [e2], x, i+ 1) :: σ

p{E [try { e1 } handle(x : τ) { e2 }]; M}σ ‖ P,S⇒T p{e1; M}σ′ ‖ P,S

[TRY COMP]

P ′ = p1{E [v1]; M1}σ′
1
‖ ... ‖ pn{E [vn]; Mn}σ′

n

σi = (Ei[e
′
i], x, j) :: σ′i S(p1) = p2 :: ... :: pn

p1{v1; M1}σ1 ‖ ... ‖ pn{vn; Mn}σn‖ P,S⇒T P
′‖ P,S

[THROW]

σ1 = (E ′[e2], x, i) :: σ′1 p2 ∈ S(p1)

p1{E [throw(p2, exc(v))]; M}σ1 ‖ P,S⇒T p1{send(p2, exc(v)); E ′[e2[v/x]]; M}σ′
1
‖ P,S

[RECV EXC]

M(p2) = (exc(v), i) :: (v, j) M ′ = M [p2 7→ v] σ1 = (E ′[e2], x, i) :: σ′1
p1{E [recv(p2)]; M}σ1 ‖ P,S⇒T p1{E ′[e2[v/x]]; M ′}σ′

1
‖ P,S

[ASYNC EXC]

M(p2) = (exc(v), i) :: (v, j) M ′ = Cl(M [p2 7→ v], i) σ = σ′ :: (E ′[e2], x, i) :: σ′′

p1{E [e]; M}σ ‖ P,S⇒T p1{E ′[e2[v/x]]; M ′}σ′′ ‖ P,S

Figure 15: Formal operational semantics for protocol failures.

[TYPE IF]

γ ` e1 : s1 γ ` e2 : s2 γ ` e3 : s3 s2 � s3 ` s4
γ ` if e1 then e2 else e3 : s1; s4

[TYPE SEND]

γ ` e : τ

γ ` send(p, e) :! dpeτ

[TYPE THROW]

γ ` e : τ

γ ` throw(p, e) : ] dpeτ

[TYPE RECV]

γ ` recv(p) :? dpeτ

[TYPE IW]

γ ` e : s

γ ` inwhile(p, e) :? dpe 〈µ.s〉

[TYPE OW]

γ ` e1 : τ γ ` e2 : s2
γ ` outwhile(e1, e2) :! µ.s2

[TYPE IB]

h = (l1 : e1), ..., (ln : en) γ ` e1 : s1 ... γ ` en : sn

γ ` inbranch(p, h) :? dpe 〈{l1 : s1, ..., ln : sn}〉

[TYPE OB]

γ ` e : s

γ ` outbranch(l, e) :! l; s

[TYPE TRY HANDLE]

γ ` e1 : s1 γ, x : τ ` e2 : s2 ∀ (! dpeτ ′| ] :τ ′′) ∈ s1 : τ ′′ = τ

γ ` try { e1 } handle(x : τ) { e2 } : T{s1}C{s2}

[TYPE PROC]

γ ` e : s s ≡p Πp(S)

p{e; M}σ ∼ S

Figure 16: Local protocol typing rules



[OR EQUAL]

s � s ` s

[OR EXC SEND]

! dpeτ | ] :τ ′ � ] dpeτ ′ `! dpeτ | ] :τ ′

[OR EXC]

! dpeτ � ] dpeτ ′ `! dpeτ | ] :τ ′

[OR SEQ]

s = s1; s2 s′ = s′1; s′2 s1 � s′1 ` s′′1 s2 � s′2 ` s′′2
s � s′ ` s′′1 ; s′′2

[OR TRY HANDLE]

s1 � s′1 ` s′′1 s2 � s′2 ` s′′2
T{s1}C{s2} � T{s′1}C{s′2} ` T{s′′1}C{s′′2}

[OR OW]

s1 � s2 ` s
! µ.s1�! µ.s2 `! µ.s

[OR IW]

s1 � s2 ` s
? dpe 〈µ.s1〉�? dpe 〈µ.s2〉 `? dpe 〈µ.s〉

[OR OB]

s1 � s2 ` s
! l; s1�! l; s2 `! l; s

[OR IB]

s′1 � s′′1 ` s1 ... s′n � s′′n ` sn
{l1 : s′1, ..., ln : s′n} � {l1 : s′′1 , ..., ln : s′′n} `? dpe 〈{l1 : s1, ..., ln : sn}〉

Figure 17: Unification of “or” types

can be unified to local protocol type s4. We define the unifi-
cation (�) of two types through the rules [OR EQUAL], [OR

EXC], [OR SEQ], and [OR TRY HANDLE]. If two types are
equal then the unification of the two types is just the type
itself [OR EQUAL]. A local protocol send type and a local
protocol failure type can be unified into an “or” type if their
targets (p) are the same (rule [OR EXC]). A sequence of local
protocol types can be unified with another sequence of local
protocol types into a new sequence if each of the constituent
types in both sequences can be unified in rule [OR SEQ]. A
local protocol try/handle type can be unified with another
local protocol try/handle type if the types of the try and
the types of the handle can be unified as shown in [OR TRY

HANDLE]. The rules [OR OW], [OR IW], [OR OB], and [OR

IB] state that loop and branch types can be unified if the
sequences (s) associated with the labels for the branches or
the body of the loop can be unified.

The type of a send expression in rule [TYPE SEND] is
derived from the result type of the expression in the typing
environment γ and the target of the send (p). Similarly
the type of a throw expression in rule [TYPE THROW] is
the failure type (] ), the targets of the throw (p), and the
type of the value stored in the failure (τ). The type of a
receive expression in rule [TYPE RECV] is derived from the
type of the message to be received and the process from
which the message originates (p). The type of a try/handle
expression in rule [TYPE TRY HANDLE] is a try/handle
type (T{s1}C{s2}) where the type of the try expression is
s1 and the type of the handle expression is s2. We state that
a process adheres to a global protocol type (p{e; M} ∼ S)
if the process expression is type to s and s is equivalent to
the projection of p from the global protocol type S.

Figure 18 defines rules for type checking a local proto-
col type against the projection of the global protocol type
for that participant. Rule ([EQUIV SEQ]) defines equiva-
lence over a type sequence. A local protocol type sequence
is equivalent to a global projected protocol type sequence if
each of their constituent elements are equivalent. A local
protocol send type is equivalent to a global projected proto-
col communication type (rule [EQUIV SEND]) if the sender
and receiver processes are equal. A local protocol send or

failure type is equivalent to a global projected protocol com-
munication or failure type (rule [EQUIV SEND EXC]) if the
sender and receiver processes are equal. A local protocol re-
ceive type is equivalent to a global projected protocol com-
munication type (rule [EQUIV RECV]) or to a global pro-
jected protocol communication or failure type (rule [EQUIV

RECV EXC]) if the sender and receiver processes are equal.
The rest of the rules are standard.

A.4 Meta-Theory
We state that a program is well-formed if it does not con-

tain infinite loops and its expressions type-check. We de-
fine safety of a well-formed program P in terms of a global
protocol type S. If the arity of the program and protocol
type match and each process within the program type-checks
against the global protocol type (i.e., the process is a well-
typed participant in the global protocol S) then the program
will complete (i.e., every process evaluates down to a value).

Theorem 1 (Safety). Given P s.t. P is well-formed
and global protocol type S s.t. ||P || = ||S||, if ∀ p{e; M}σ ∈
P , p{e; M} ∼ S, let S = {p | p{e; M}σ ∈ P}, then

P,S⇒T p{v; M}σ,S.

B. TRACKING FAILURE DEPENDENCIES
THROUGH TYPES

When a failure occurs, it is important to know whom to
notify of the occurrence of the failure itself. Any computa-
tion that would have normally been executed if the failure
had not occurred, must be examined. Specifically, if any
communication action occurs in that computation, both the
sender and received must be notified of the failure. No-
tice that the type structure of protocol types is sufficient
to determine the communication dependencies on a given
failure. We define two relations (�) and (;) to compute
such dependencies. These are defined in Figures 19 and 20
respectively.

The relation (�) takes a global protocol type (S) and pro-
duces a sequence of processes (p) that communicate within
(S). A communication type, [DEP COMM], contains both a



[EQUIV SEQ]

s = s1; s2 S = S1;S2 s1 ≡p S1 s2 ≡p S2

s ≡p S

[EQUIV TRY HANDLE]

s1 ≡p S1 s2 ≡p S2

T{s1}C{s2} ≡p T{S1}C{S2}

[EQUIV SEND]

! dpeτ ≡p′ dp′ → peτ

[EQUIV SEND EXC]

! dpeτ | ] :τ ′ ≡p′ dp′ → peτ | ] :τ ′

[EQUIV RECV]

? dpeτ ≡p′ dp → p′eτ

[EQUIV RECV EXC]

? dpeτ ≡p′ dp → p′eτ | ] :τ ′

[EQUIV OW]

s ≡p S
! µ.s ≡p p 〈 ! µ.S〉

[EQUIV IW]

s ≡p S
? dpe 〈µ.s〉 ≡p′ p 〈 ! µ.S〉

[EQUIV OB]

l;S ∈ l;S s ≡p S
! l; s ≡p p 〈! l;S〉

[EQUIV IB]

s ≡p S
? dpe 〈l : s〉 ≡p′ p 〈! l;S〉

Figure 18: Type checking rules

[DEP COMM]

dp → p′eτ � p :: p′

[DEP COMM EX]

dp → p′eτ | ] :τ ′ � p :: p′

[DEP LOOP]

S � p′
p 〈 ! µ.S〉 � p :: p′

[DEP COND]

l;S = l1;S1, ..., ln;Sn S1 � p1...Sn � pn
p′ = p1 :: ... :: pn

p 〈! l;S〉 � p :: p′

[DEP TRY]

S1 � p S2 � p′
T{S1}C{S2} � p :: p′

[DEP SEQ]

S1 � p S2 � p′
S1;S2 � p :: p′

Figure 19: Linear dependence tracking.

send and a receiver. The rule [DEP COMM EX] is similar to
[DEP COMM]. For loops, [DEP LOOP], the type of the body
is analyzed. For conditionals, [DEP COND], each branch is
analyzed separately and all are added together. This is nec-
essary to capture dependencies on exceptions that propagate
to outer contexts and, thus, can affect participants on each
branch. Both the try and handle clauses are analyzed in
[DEP TRY] and all communication actions are included. We
assume that the compiler will validate that a failure can be
raised in the try block, thus both paths (the standard and
the exceptional) are feasible. Sequences are analyzed in the
standard way in [DEP SEQ].

The relation (;) rewrites a stack of failure handlers (%)

and a global protocol type (S) to a stack of failure han-
dlers (%) and an annotated global protocol type (Sp). The
annotation on the type lists the dependencies for the type.
Logically the dependencies are a list of processes that engage
in communication after the computation described by (S).
The rewrite rules are given in pairs to account for sequenc-
ing. The rule [RW COM] and rule [RW COM SEQ] define
rewriting for basic communication types. In the case of a
single communication, there are no additional dependencies
other than the communication itself. For a communication
sequence before a type (S), the dependencies are the pro-
cesses engaged in communication within (S). The rules [RW

COM EX] and [RW COM EX SEQ] are similar to their non
failure counterparts, except that they also consider the most
enclosing handler and the communications performed within
the handler. The rules for loops, [RW LOOP] and [RW LOOP

SEQ], introspect the body of the loop. The dependencies on
the loop are the communicating processes occurring after
the loop. The rules for conditionals, [RW COND] and [RW

COND SEQ], are similar to those of loops. The most inter-
esting rules are for try and handle types, [RW TRY] and [RW

TRY SEQ]. Both these rules construct a stack of failure han-
dlers and then calculate the dependencies for the try type
and the handle type.

C. AUXILIARY RELATIONS
Figure 21 defines the filtering of a given participant’s por-

tion of a global protocol type from a global protocol type.
Specifically given a process (i.e. participant) identifier, all
relevant typing statements are filtered from the global pro-
tocol type. This relation is used to simplify the main projec-
tion rules, which project a local protocol type from a global
protocol type.

The send rule for ⇒T is the same as for ⇒, except that
each message is tagged with the nesting level at which it
was sent. The nesting level is simply the size of the failure
handling stack.



[RW COM]

(%, dp → p′eτ )p′′ ; (%, dp → p′ep′′τ )

[RW COM SEQ]

S � p′′ (%, S) ; (%, S′)

(%, dp → p′eτ ;S)p′′′ ; (%, dp → p′ep′′′::p′′τ ;S′)

[RW COM EX]

S � p′′

(C{S} :: %, dp → p′eτ | ] :τ ′)p′′′ ; (%, dp → p′ep′′′::p′′τ | ] :τ ′ )

[RW COM EX SEQ]

S � p′′ (s, S)p′′′::p′ ; (s, S′)

(C{S} :: %, dp → p′eτ | ] :τ ′ ;S)p′′′ ; (C{S} :: %, dp → p′ep′′τ | ] :τ ′ ;S
′)

[RW LOOP]

(%, S1)p′ ; (%, S′1)

(%, p 〈 ! µ.S〉)p′ ; (%, p 〈 ! µ.S〉p′)

[RW LOOP SEQ]

S2 � p′ (%, p 〈 ! µ.S1〉)p′′::p′ ; (%, p 〈 ! µ.S′1〉) (%, S2)p′′::p′ ; (%, S′2)

(%, p 〈 ! µ.S〉)p′′ ; (%, p 〈 ! µ.S′1〉p
′
;S′2)

[RW COND]

(%, S1)p ; (%, S′1)

(%, p 〈! l;S1〉)p ; (%, p 〈! l;S1〉p)

[RW COND SEQ]

S2 � p′ (%, p 〈! l;S1〉)p′::p′′ ; (%, p 〈! l;S′1〉) (%, S2)p′::p′′ ; (%, S′2)

(%, p 〈! l;S1〉;S2)p′′ ; (%, p 〈! l;S′1〉p
′
;S′2)

[RW TRY]

(C{S2} :: %, S1)p ; (C{S2} :: %, S′1) (%, S2)p ; (%, S′2)

(%, T{S1}C{S2})p ; (%, T{S′1}C{S′2}φ)

[RW TRY SEQ]

S � p (C{S2} :: %, S1)p′::p ; (C{S2} :: %, S′1) (%, S2)p′::p ; (%, S′2) (%, S) ; (%, S′)

(%, T{S1}C{S2};S)p′ ; (%, T{S′1}C{S′2}p;S′)

Figure 20: Type dependence construction.



[FILTER SEQ]

Πp(S1) = S′1 Πp(S2) = S′2
Πp(S1;S2) = S′1;S′2

[FILTER EMPTY]

p 6= p1 p 6= p2
Πp(dp1 → p2eτ ) = φ

[FILTER SEND]

Πp(dp → p1eτ ) = dp → p1eτ
[FILTER RECV]

Πp(dp1 → peτ ) = dp1 → peτ
[FILTER EMPTY EXC]

p 6= p1 p 6= p2
Πp(dp1 → p2eτ | ] ) = φ

[FILTER SEND EXC]

Πp(dp → p1eτ | ] ) = dp → p1eτ | ]

[FILTER RECV EXC]

Πp(dp1 → peτ | ] ) = dp1 → peτ | ]

[FILTER LOOP]

Πp(p1 〈 ! µ.S〉) = p 〈 ! µ.S′〉

[FILTER BRANCH]

Πp(p1 〈! l;S〉) = p 〈 ! µ.S′〉

[FILTER TRY HANDLE]

Πp(S1) = S′1 Πp(S2) = S′2 S′1 6= φ S′2 6= φ

Πp(T{S1}C{S2}) = T{S′1}C{S′2}

[FILTER TRY HANDLE EMPTY]

Πp(S1) = φ Πp(S2) = φ

Πp(T{S1}C{S2}) = φ

Figure 21: Filter of a participants portion of a global pro-
tocol type.

[SEND]

i = ||σ1|| M ′2 = M2[p1 7→M2(p1) :: (v, i)]

p1{E [send(p2, v)]; M1}σ1 ‖ p2{E [e]; M2}σ2 ‖ P,S⇒
p1{E [unit]; M1}σ1 ‖ p2{E [e]; M ′2}σ2 ‖ P,S

Similarly, the receive rule simply ignores the tagged nest-
ing level when processing a message.

[RECV]

M(p2) = (v, i) :: (v, j) M ′ = M [p2 7→ v]

p1{E [recv(p2)]; M}σ ‖ P,S⇒ p1{E [v]; M ′}σ ‖ P,S

Rule [CLEAN] takes a message map (M) and a nesting
level (i) and removes all messages from the message map
that were tagged with the nesting level or higher.

[CLEAN]

k ≥ i > j

M = {p1 7→ (v, i) :: (v, j), ..., pn 7→ (v, k) :: (v, j)}
Cl(M, i) = {p1 7→ (v, j), ..., pn 7→ (v, j)}

D. ADVANCED FEATURES
This section discusses syntactic extensions to the basic

features.

D.1 Extending Synchronization
One could consider exploiting the first addition to our

basic semantics explained at the end of Section 4.1 to ex-
tend synchronization, when desired, to participants which
are neither in the causal path of a failure nor appear in
a given handle clause by artifically adding them to such a
clause with a “bogus” communication. Since we believe it
is important to give the programmer the choice on the ex-
tent of synchronization, the desire to thus add a participant
does not seem absurd at all. To avoid however adding such
artificial sends, which would have to be chosen carefully to
not introduce synchronization beyond the extent desired, we
allow handle handlers to be annotated with any number of
participants (handle<P1 ,... ,Pn>) which have to be synchro-
nized and informed upon a corresponding failure. This is
the second exemption to the original rule of Section 4.1. If
the occurrence of D in the example of Section 4.1 was using
artificial communication, then the following is better:

t r y {
A −> B: <T1> | F
C −> B: <T2>

} handle<D>(F) {
. . .

}

D.2 Local Failures
For flexibility we also support one exemption from the

propagation semantics presented in the context of nesting
in Section 4.2.

In many cases failures — especially application-induced
ones — denote specific values which prompt the recipient
to choose an alternate treatment. Such a participant might
very well be able to define a purely local treatment which
overcomes the exceptional state. In other terms, there are
scenarios where a recipient can deal entirely locally with a
failure, e.g., by adopting a default value instead of the ex-
pected one. To capture these scenarios, a failure F can be
wrapped in angle brackets, i.e., written [F]. Correspond-
ingly, no failure handler has to be defined for it, and even
if there is one in scope, the failure notification will not be
propagated. In fact such a notation, e.g.,

A −> B: <T> | [ F ]

can be viewed as syntactic sugar for

t r y {
A −> B: <T> | F

} handle (F) {}

that is, wrapping the corresponding send with an empty
failure handler. It is easy to see how this can be straight-
forwardly composed with non-local failures thus ensuring
orthogonality, e.g.,

A −> B: <T> | [ F1 ] | F2



D.3 Explicitly Propagating Failures and Multi-
level Retries

In effect, the notation A −> B: <T> | F can be viewed as
a shortcut for a branching guarded by A that contains in
one branch a subsequent send of a value of type T to B and
in the other one an explicit raising of a failure of type F

on B. As mentioned, the inherent support allows for com-
munications to be combined. It seems natural to also allow
an explicit raising of a failure without alternative sending
A −> B: F. In addition, the possibility of explicitly propa-
gating failures or notifying new failures from within handle

clauses — as known from exceptions in mainstream lan-
guages — is another useful feature. Here, in contrast to
the above, an explicit destination is not needed: the set of
causally depending communications/participants is derived
from the set used for the handle clause itself. In the example
below, Line 8 will be performed, while Line 9 will be aborted
in the case of a failure of type F.

1 t r y {
2 A −> B: <T1>
3 t r y {
4 A −> B: <T2> | F
5 } handle (F) {
6 B: throw F
7 }
8 C −> B: <T3>
9 A −> C : <T4>

10 . . .
11 } handle (F) {
12 A: r e t r y
13 }
14 . . .

In the protocol implementation B can re-raise the very
instance of F raised by A, or raise a new one. This mechanism
is very convenient for implementing multi-level retries. The
F failure propagated at Line 6 is namely used to delegate the
retry decision to the outer scope, at Line 12, which allows
the first send at Line 2 also to be repeated. A new failure
type (e.g., FDeleg) could also be introduced for clarity.

We are currently considering adding syntactic sugar which
would avoid the throwing of F and the introduction of the
outer handler (and thus the outer try) by replacing Line 6
by A: retry (1). This would thus have the same effect of auto-
matically transferring control 1 scope outwards and issuing
the retry from there. In that light, we are also considering
introducing support for multi-level aborts (e.g., A: abort(1)

which would similarly save the introduction of a failure and
a failure handler which in this case would be empty.

E. ADDITIONAL EXAMPLES

E.1 Three Phase Commit
Three Phase Commit (3PC) [27] is a refinement of 2PC

which aims at supporting the case of coordinator failure (in
addition to participant failure). The motivation is that if the
coordinator fails together with at least one participant then
it may be impossible for the participants to know what the
outcome was/should have been. By catering for coordinator
failures as well, the corresponding protocol type becomes
vastly more complex — even for the case of only two partic-
ipants — than the corresponding protocol type for 2PC (cf.
Figure 5). This 3PC protocol type is defined in Figure 22.
It was used for our evaluation.

E.2 Currency Broker
The buyer controls a loop where it keeps getting currency

quotes until it gets an acceptable one or chooses to exit
without buying. The broker simply keeps getting quotes
from a seller and adds a brokerage amount to it and sends
the updated quote to the buyer. If the buyer gets a good
quote, it consults the user on whether to buy or not. If
the user chooses to buy, the transaction begins with the
broker buying from the third party seller and then selling
to the buyer. During the time the user is consulted, the
currency price may have changed. In this case, a failure is
notified. When there is a price change, the user is notified
and consulted again and the transaction is completed with
the new price.



protoco l 3PC {
pa r t i c i p a n t s : Coo rd ina to r , P a r t i c i p a n t 1 , P a r t i c i p a n t 2
// Phase 1 : send a ‘ ‘ CanCommit ? ’ ’ r e q u e s t
t r y {

Coo rd i n a t o r −> Pa r t i c i p a n t 1 : <Commit Request>
| Coo r d i n a t o r F a i l u r e

Coo rd i n a t o r −> Pa r t i c i p a n t 2 : <Commit Request>
| Coo r d i n a t o r F a i l u r e

t r y {
Pa r t i c i p a n t 1 −> Coo rd i n a t o r : <Can Commit>
| P a r t i c i p a n t F a i l u r e

P a r t i c i p a n t 2 −> Coo rd i n a t o r : <Can Commit>
| P a r t i c i p a n t F a i l u r e

// Phase 2 : e i t h e r a l l p a r t i c i p a n t s ag reed
// to commit or some have r e f u s e d
t r y {

Coo rd i n a t o r −> Pa r t i c i p a n t 1 : <PrepOrAbort>
| Coo rd i n a t o rT imeou tFa i l u r e

Coo rd i n a t o r −> Pa r t i c i p a n t 2 : <PrepOrAbort>
| Coo rd i n a t o rT imeou tFa i l u r e

Coo rd i n a t o r : {
Commit : // In ca se we s en t a Commit message
t r y {

Pa r t i c i p a n t 1 −> Coo rd i n a t o r : <ACK>
| Timeou tFa i l u r e

P a r t i c i p a n t 2 −> Coo rd i n a t o r : <ACK>
| Timeou tFa i l u r e

} handle ( T imeou tFa i l u r e ) {
Coo rd i n a t o r −> Pa r t i c i p a n t 1 : <Abort>
Coo rd i n a t o r −> Pa r t i c i p a n t 1 : <Abort>

}
// Phase 3 : a l l p a r t i c i p a n t s have
// ACKed the Prepare message
Coo rd i n a t o r −> Pa r t i c i p a n t 1 : <Commit>
Coo rd i n a t o r −> Pa r t i c i p a n t 2 : <Commit>
Pa r t i c i p a n t 1 −> Coo rd i n a t o r : <Committed>
Pa r t i c i p a n t 2 −> Coo rd i n a t o r : <Committed>
, Abort : //do no th ing

}
} handle ( Coo r d i n a t o rT imeou tFa i l u r e ) {}

} handle ( P a r t i c i p a n t F a i l u r e <Pa r t i c i p a n t 1 >) {
Coo rd i n a t o r −> Pa r t i c i p a n t 2 : <Abort>

} handle ( P a r t i c i p a n t F a i l u r e <Pa r t i c i p a n t 2 >) {
Coo rd i n a t o r −> Pa r t i c i p a n t 1 : <Abort>

}
} handle ( C o o r d i n a t o r F a i l u r e ) {

/∗ Coo rd i n a t i o n f a i l u r e ∗/ }
}

Figure 22: Global protocol type for 3PC



protoco l Cur r encyBroke r {
p a r t i c i p a n t : Buyer , Broker , S e l l e r
Buyer : [ // Keep g e t t i n g quote s

Buyer −> S e l l e r : <St r i ng> // Request a quote
S e l l e r −> Broker : <Double> // S e l l e r ’ s p r i c e
Broker −> Buyer : <Double> // Add 5% commiss ion
Buyer : {

Accept :
t r y {

Broker −> S e l l e r : <St r i ng> // S e l l
S e l l e r −> Broker : <St r i ng>
| Pr i c eChang eFa i l u r e

Broker −> Buyer :
<St r i ng >, //Order Con f i rma t i on

} handle ( P r i c eChang eFa i l u r e ) {
Buyer : r e t r y ; // Ret ry on l y i f you accep t new quote

}
, R e j e c t : // Do noth i ng

}
]∗

}

Figure 23: Global protocol type for the currency broker protocol


