Simplifying the Use of Type-Generic
Programming in Parallel Code

Ulrich Drepper



’_ redhat

Commercial Programming

In my world:
Java (unfortunately) for web and business logic

C++ for everything else
Especially also when performance is an issue
C++ as in ISO C++ (1998 and now 201x)
Not OOP!!! (People can learn from mistakes)
Type generic programming

ISO C++ 201x will allow most of the TG Programming
theory to be applied



’_ redhat

Type-Generic Programming & C++

Now (ISO C++ 201x) good language support
A lot of library support

Containers, algorithms

Combined with functional programming aspects (lambdas)
Language even includes support for thread handling

But: no integration of parallel programming into the library
No thread-safety guarantees
No explicit support for thread-safety
Not easy/possible to integrate in existing APIs



’_ redhat

C++ map Class

Type-Generic class in C++:

template <class Key, class T, class Compare=less<Key>,
class Allocator=allocator<pair<const Key, T> > >
class map

All type parameters

References to global objects only alternative
Unpractical for almost all uses
Need to know ahead of time how many mutexes



’_ redhat

This leaves us with...

Explicit, external locking
With all the associated problems:
Selection of granularity
Error-prone use
Forget to use
AB-BA deadlocks



Q redhat

Transaction System

Portfolio Data




Q redhat

Trying To Parallelize

Portfolio Data

—~Lock Domain




Q redhat

Not What We Want

60 350
300
50
250
‘0 40 %)
E E
®) (@)
O O 200
Q (D]
Y, 30 0,
(0D} ()]
- £ 150
= =
= =
20
nd nd
100
10
50
0 0

1 2 3 4 5 6 7 8 1 2 4 5 6 7 8 9

Single Core 17 Opteron NUMA



‘. redhat

Too Little Parallelism

|dealized Amdahl's Law

1

P
(1-P) + ~

P is too small
After lock contention analysis: push locks further down



Q redhat

Trying To Parallelize

Portfolio Data

Lock Domain

Bank 1 Bank 2 Bank N



Q redhat

Somewhat Better But...

60 350

300
50

250
40

N
o
o

30

Runtime [seconds]

Runtime [seconds]

20

100

10
50

0 0

1 2 3 4 5 6 7 8 1 2 4 5 6 7 8 9

Single Core 17 Opteron NUMA



’_ redhat

... Itls Hard To Get Right

Many problems lurking:
Space overhead (many more locks when pushed down)
Initialization problems
In pthreads each mutex must be explicitly initialized
Definitely not possible with C++ templates
AB-BA locking problems
Need total ordering of all locks taken concurrently



’_ redhat

C++ Specific (or: Why Not with Templates)

Assume template classes:
template<mutex_t& m> portfolio;

template<mutex_t& m> bank;

Even less scalable than first version because
bank<some_mutex> banks[10];

uses same mutex for all array elements

Define specializations:

template<class Key, class T> T& map::operator(Key& x);

template<class Key, class T> T& map::operator(Key& X,
mutex_t& m);

Does not solve anything...



’_ redhat

Implicit Locking Not Sufficient

For transactions we need more complex locking

if (accountl.mutex < account2.mutex) {
mutex_lock(accountl.mutex);
mutex_lock(account2.mutex);

} else {
mutex_lock(account2.mutex);
mutex_lock(accountl.mutex);

}

accountl.balance -= sum;

account2.balance += sum;

if (accountl.mutex < account2.mutex) {
mutex_unlock(account2.mutex);



’_ redhat

Consequently

Locking in type-generic code is either

Somewhat simple to use (implicit locking) and limited in
application

or

Hard to use (explicit, external locking) and general enough to
be used in all cases

Neither case works for automatic, implicit parallelization

We need something completely different!



‘. redhat

A More Realistic Formula

Extended Amdahl's Law: overhead factors

1

(1-P) (1+04) + (1+0,)

P
N
Parallelization is not free

Most of the time not even for serial code
The results are not that bad...



Q redhat

Even With Overhead (P=0.6)

2.5

2
— 0%
15
—20%
~ | 40%
! —90%

—1000%

0.5

Even 40% overhead not that much slower
Speed-up from two threads on



Q redhat

Even With Overhead (P=0.6)

E—
—

— 0%

—20%
40%
—1000%
—1000%

Even with two threads faster

We can use technologies with overhead:

STM



‘. redhat

Implicit Locking Not Sufficient

With TM support:

__transaction {
accountl.balance -= sum;
account2.balance += sum;



’_ redhat

Adjust Library

Lots of work needed in the library

Make compile in TM mode without changing non-TM
Add __transaction where needed

Define clones when of advantage

Integrate with exception safety of standard library
Add special support for memory allocation



‘. redhat

Performance (Projection, Sorry...)

2.5

15

— P=0.6

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Assume OS: 5% and OP: 40%



’_ redhat

Acknowledgement

This work has received some funding from the European
Community's Seventh Framework Programme (FP7/2007-2013)
under grant agreement Ne 216852.



Questions?

drepper@redhat.com | people.redhat.com/drepper



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

