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Commercial Programming

In my world:
Java (unfortunately) for web and business logic

C++ for everything else
Especially also when performance is an issue
C++ as in ISO C++ (1998 and now 201x)
Not OOP!!! (People can learn from mistakes)
Type generic programming

ISO C++ 201x will allow most of the TG Programming
theory to be applied
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Type-Generic Programming & C++

Now (ISO C++ 201x) good language support
A lot of library support

Containers, algorithms

Combined with functional programming aspects (lambdas)
Language even includes support for thread handling

But: no integration of parallel programming into the library
No thread-safety guarantees
No explicit support for thread-safety
Not easy/possible to integrate in existing APIs
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C++ map Class

Type-Generic class in C++:

template <class Key, class T, class Compare=less<Key>,
class Allocator=allocator<pair<const Key, T> > >
class map

All type parameters

References to global objects only alternative
Unpractical for almost all uses
Need to know ahead of time how many mutexes
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This leaves us with...

Explicit, external locking
With all the associated problems:
Selection of granularity
Error-prone use
Forget to use
AB-BA deadlocks
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Transaction System

Portfolio Data
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Trying To Parallelize

Portfolio Data

—~Lock Domain
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Not What We Want
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Too Little Parallelism

|dealized Amdahl's Law

1

P
(1-P) + ~

P is too small
After lock contention analysis: push locks further down
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Trying To Parallelize

Portfolio Data

Lock Domain

Bank 1 Bank 2 Bank N
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Somewhat Better But...
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... Itls Hard To Get Right

Many problems lurking:
Space overhead (many more locks when pushed down)
Initialization problems
In pthreads each mutex must be explicitly initialized
Definitely not possible with C++ templates
AB-BA locking problems
Need total ordering of all locks taken concurrently
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C++ Specific (or: Why Not with Templates)

Assume template classes:
template<mutex_t& m> portfolio;

template<mutex_t& m> bank;

Even less scalable than first version because
bank<some_mutex> banks[10];

uses same mutex for all array elements

Define specializations:

template<class Key, class T> T& map::operator(Key& x);

template<class Key, class T> T& map::operator(Key& X,
mutex_t& m);

Does not solve anything...
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Implicit Locking Not Sufficient

For transactions we need more complex locking

if (accountl.mutex < account2.mutex) {
mutex_lock(accountl.mutex);
mutex_lock(account2.mutex);

} else {
mutex_lock(account2.mutex);
mutex_lock(accountl.mutex);

}

accountl.balance -= sum;

account2.balance += sum;

if (accountl.mutex < account2.mutex) {
mutex_unlock(account2.mutex);
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Consequently

Locking in type-generic code is either

Somewhat simple to use (implicit locking) and limited in
application

or

Hard to use (explicit, external locking) and general enough to
be used in all cases

Neither case works for automatic, implicit parallelization

We need something completely different!
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A More Realistic Formula

Extended Amdahl's Law: overhead factors

1

(1-P) (1+04) + (1+0,)

P
N
Parallelization is not free

Most of the time not even for serial code
The results are not that bad...
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Even With Overhead (P=0.6)
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Even With Overhead (P=0.6)
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We can use technologies with overhead:

STM
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Implicit Locking Not Sufficient

With TM support:

__transaction {
accountl.balance -= sum;
account2.balance += sum;
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Adjust Library

Lots of work needed in the library

Make compile in TM mode without changing non-TM
Add __transaction where needed

Define clones when of advantage

Integrate with exception safety of standard library
Add special support for memory allocation
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Performance (Projection, Sorry...)
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