
Simplifying the Use of Type-Generic
Programming in Parallel Code

Ulrich Drepper

Commercial Programming

 In my world:

● Java (unfortunately) for web and business logic

● C++ for everything else
● Especially also when performance is an issue

● C++ as in ISO C++ (1998 and now 201x)
● Not OOP!!! (People can learn from mistakes)
● Type generic programming

● ISO C++ 201x will allow most of the TG Programming
theory to be applied

Type-Generic Programming & C++

 Now (ISO C++ 201x) good language support
 A lot of library support

● Containers, algorithms
● Combined with functional programming aspects (lambdas)

 Language even includes support for thread handling

 But: no integration of parallel programming into the library
● No thread-safety guarantees
● No explicit support for thread-safety
● Not easy/possible to integrate in existing APIs

C++ map Class

 Type-Generic class in C++:

template <class Key, class T, class Compare=less<Key>,

 class Allocator=allocator<pair<const Key, T> > >

class map

 All type parameters
 References to global objects only alternative

● Unpractical for almost all uses
● Need to know ahead of time how many mutexes

This leaves us with...

 Explicit, external locking
 With all the associated problems:

● Selection of granularity
● Error-prone use

● Forget to use
● AB-BA deadlocks

Transaction System

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Deduct Shares from Person 1

Add Shares to Person 2

Subtract from Person 2 Account Add to Person 1 Account

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Trying To Parallelize

Lock Domain

Not What We Want

1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

Single Core i7

R
un

tim
e

[s
ec

o
nd

s]

Opteron NUMA

R
un

tim
e

[s
ec

o
nd

s]

Too Little Parallelism

 Idealized Amdahl's Law

 P is too small
 After lock contention analysis: push locks further down

S =
1

1−P  
P
N

Portfolio Data

Bank 1 Bank 2 Bank N

Person 1

Person 2

Person N

Trying To Parallelize

Lock Domain

Somewhat Better But…

1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

Single Core i7

R
un

tim
e

[s
ec

o
nd

s]

Opteron NUMA

R
un

tim
e

[s
ec

o
nd

s]

… It Is Hard To Get Right

 Many problems lurking:
● Space overhead (many more locks when pushed down)
● Initialization problems

● In pthreads each mutex must be explicitly initialized
● Definitely not possible with C++ templates
● AB-BA locking problems

● Need total ordering of all locks taken concurrently

C++ Specific (or: Why Not with Templates)

 Assume template classes:
template<mutex_t& m> portfolio;

template<mutex_t& m> bank;

 Even less scalable than first version because
bank<some_mutex> banks[10];

uses same mutex for all array elements

 Define specializations:
template<class Key, class T> T& map::operator(Key& x);

template<class Key, class T> T& map::operator(Key& x,

 mutex_t& m);

Does not solve anything…

Implicit Locking Not Sufficient

 For transactions we need more complex locking

if (account1.mutex < account2.mutex) {

 mutex_lock(account1.mutex);

 mutex_lock(account2.mutex);

} else {

 mutex_lock(account2.mutex);

 mutex_lock(account1.mutex);

}

account1.balance -= sum;

account2.balance += sum;

if (account1.mutex < account2.mutex) {

 mutex_unlock(account2.mutex);

 …

Consequently

 Locking in type-generic code is either
● Somewhat simple to use (implicit locking) and limited in

application

or
● Hard to use (explicit, external locking) and general enough to

be used in all cases
 Neither case works for automatic, implicit parallelization

We need something completely different!

A More Realistic Formula

 Extended Amdahl's Law: overhead factors

 Parallelization is not free
● Most of the time not even for serial code

 The results are not that bad…

S =
1

1−P  1OS 
P
N

1OP

Even With Overhead (P=0.6)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

0%
20%
40%
90%
1000%

 Even 40% overhead not that much slower
 Speed-up from two threads on

Even With Overhead (P=0.6)

1 2 3

0

0.5

1

1.5

2

0%
20%
40%
1000%
1000%

 Even with two threads faster
 We can use technologies with overhead: STM

Slowdown!

Implicit Locking Not Sufficient

 With TM support:

if (account1.mutex < account2.mutex) {

 mutex_lock(account1.mutex);

 mutex_lock(account2.mutex);

} else {

 mutex_lock(account2.mutex);

 mutex_lock(account1.mutex);

}

account1.balance -= sum;

account2.balance += sum;

if (account1.mutex < account2.mutex) {

 mutex_unlock(account1.mutex);

 …

__transaction {

}

Adjust Library

 Lots of work needed in the library
● Make compile in TM mode without changing non-TM
● Add __transaction where needed
● Define clones when of advantage
● Integrate with exception safety of standard library
● Add special support for memory allocation

Performance (Projection, Sorry…)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

P=0.6

 Assume O
S
= 5% and O

P
= 40%

Acknowledgement

This work has received some funding from the European
Community's Seventh Framework Programme (FP7/2007-2013)
under grant agreement № 216852.

Questions?

drepper@redhat.com | people.redhat.com/drepper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

