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Introduction

Overview

This talk is about some very preliminary ideas for the next step in the
design of the Parallel ML (PML) language, which is part of the
Manticore system.
Specifically, we are exploring three related ways to grow the language:

1. better support for speculative parallelism
2. support for shared state between implicitly-parallel computations
3. supporting nondeterminism to increase parallelism

This talk focuses on the first two.
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Introduction Manticore

The Manticore Project

I The Manticore project is our effort to address the programming
needs of commodity applications running on multicore SMP
systems

I Prototype language design supports different levels of parallelism
I High-level declarative mechanisms for fine-grain parallelism
I No shared memory
I Preserve determinism where possible
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Introduction Manticore

The Manticore Project (continued ...)

Our initial language design is called Parallel ML (PML).
I Sequential core language based on subset of SML: strict with no

mutable storage.
I A variety of lightweight implicitly-threaded constructs for fine-grain

parallelism.
I Explicitly-threaded parallelism based on CML: message passing

with first-class synchronization.
I Prototype implementation with good scaling on 16-way parallel

hardware for a range of applications.
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Implicit threading

Implicit threading

PML provides several light-weight syntactic forms for introducing
parallel computation.

I Nested Data-parallel arrays provide fine-grain data-parallel
computations over sequences.

I Parallel tuples provide a basic fork-join parallel computation.
I Parallel bindings provide data-flow parallelism with cancellation of

unused subcomputations.
I Parallel cases provide non-deterministic speculative parallelism.

These forms are declarations that a computation is a good candidate
for parallel execution, but the details are left to the implementation.
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Implicit threading

Implicit threading design space

We can organize these features by how well behaved they are.

non-speculative deterministic
speculation

nondeterministic
speculation

speculation
+ mutation

Manticore 1.0

(| |)
[| |]

pval pcase
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Speculation

The need for speculation

I Amdahl’s Law tells us that as the number of cores increases,
execution time will be dominated by sequential code.

I Speculation is an important tool for introducing parallelism in
otherwise sequential code.

I PML supports both deterministic and nondeterministic
speculation.

TMW 2010 Implicit threading, Speculation, and Mutation in Manticore 7



Speculation

The need for speculation

I Amdahl’s Law tells us that as the number of cores increases,
execution time will be dominated by sequential code.

I Speculation is an important tool for introducing parallelism in
otherwise sequential code.

I PML supports both deterministic and nondeterministic
speculation.

TMW 2010 Implicit threading, Speculation, and Mutation in Manticore 7



Speculation

The need for speculation

I Amdahl’s Law tells us that as the number of cores increases,
execution time will be dominated by sequential code.

I Speculation is an important tool for introducing parallelism in
otherwise sequential code.

I PML supports both deterministic and nondeterministic
speculation.

TMW 2010 Implicit threading, Speculation, and Mutation in Manticore 7



Speculation

Parallel bindings

Parallel bindings allow deterministic speculation. For example, the
computation of b may not be needed in the following program:

datatype tree = LF of long | ND of tree * tree

fun treeMul (LF n) = n
| treeMul (ND(t1, t2)) = let

pval b = treeMul t2
val a = treeMul t1
in

if (a = 0) then 0 else a*b
end
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Speculation

Parallel case

Parallel case supports non-deterministic speculation when we want the
quickest answer (e.g., search problems). For example, consider
picking a leaf of the tree:

fun treePick (LF n) = n
| treePick (ND(t1, t2)) = (

pcase treePick t1 & treePick t2
of ? & n => n
| n & ? => n)

There is some similarity with join patterns.
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Speculation

Extending speculation to collections

Using pcase, one can define speculative functions over lists:

fun pExists f [] = false
| pExists f (x::xs) = (pcase f x & pExists f xs

of true & ? => true
| ? & true => true
| false & false => false)

We plan to provide similar operations on our data-parallel arrays,
which will avoid the sequential bottleneck of the list-based operations.
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Mutation

The need for shared mutable state

I Mutable storage is a very powerful communication mechanism:
essentially a broadcast mechanism supported by the memory
hardware.

I Sequential algorithms and data-structures gain significant
(asymptotic) performance benefits from shared memory (e.g.,
union-find with path compression).

I Some algorithms seem hard/impossible to parallelize without
shared state (e.g., mesh refinement).

I But shared memory makes parallel programming hard, so we
want to be cautious in adding it to PML.
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Mutation

The design challenge

I How do we add shared memory while preserving PML’s
declarative programming model for fine-grain parallelism?

I Some races are okay in an implicitly-threaded setting.
I Deadlock is not okay in an implicitly-threaded setting.
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Mutation

Example: Minimax search

I Algorithms, such as minimax search and SAT solving, can benefit
from sharing information between branches of the search.

I For game search, transposition tables are used to turn the search
tree into a DAG.

I Transposition tables provide a kind of function memoization.
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Mutation

Transposition tables

X
X

X O
X
O

X
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Mutation

Transposition tables (continued ...)

I For Tic-Tac-Toe, using a transposition table results in a 34-fold
reduction in the number of board positions searched.

I Thus, a sequential search that uses a transposition table is likely
to beat a parallel search that doesn’t.

I Want to support sharing information between parallel branches.
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Mutation

Possible feature: Blackboards

I Implementing memoization in a general-purpose language poses
a lot of challenges, such as efficient equality testing and hashing
for user-defined types.

I An alternative are blackboards, which are essentially shared hash
tables.
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Mutation

Adding blackboards to PML

Write-once blackboards; returns value if already set.

val setIfNotSet : (’a bb * key * ’a) -> ’a option

Memoize a function so that it is evaluated no more than once per call.

fun memo (bb, keyFn, f) x = let
val iv = ivarNew()
in

case setIfNotSet (bb, keyFn x, iv)
of SOME iv’ => ivarGet iv’
| NONE => let

val y = f x
in ivarSet (iv, y); y end

end

This approach fits well with our existing mechanisms.
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Mutation

What is the right level of abstraction?

I One approach is to provide a collection of parallel data structures,
such as blackboards.

I Alternatively, we can provide lower-level mechanisms.
I For example, blackboards can be built from synchronous variables

(MVars and IVars), but synchronous variables introduce the
possibility of deadlock.

I Perhaps STM is the solution?
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Mutation

People
Lars Bergstrom University of Chicago
Matthew Fluet Rochester Institute of Technology
Mike Rainey University of Chicago
Adam Shaw University of Chicago
Yingqi Xiao University of Chicago

with help from

Nic Ford University of Chicago
Korie Klein University of Chicago
Joshua Knox University of Chicago
Jon Riehl University of Chicago
Ridg Scott University of Chicago

http://manticore.cs.uchicago.edu
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