v Transaction Memory for

- Existing Programs
"~ Michael M. Swift
Haris Volos, Andres Tack, Shan Lu, Adam Welc *

University of Wisconsin-Madison, *Intel

Where do TM programs ome
from?

O Parallel benchmarks replacing all locks
Splash 2, Parsec, ...

O Write new programs from scratch

Stamp
STMBench 7

O WVhat about existing multithreaded
programs!

Considerations of Real Programs

O They run on virtual hardware
They context switch
They run in hypervisors

O They use the operating system
They use file, network 1/O

O They are not 100% transactional
They use locks and condition variables

They have too much code to rewrite
The benefit from of TM

Our Work

O LogTM-SE/VSE/TokenTM: virtualizing
HW transactional memory

O TxLocks and TxCondVars: interaction
with locks and condition variables

O xCalls: interacting with the OS

O TM as a concurrency bug fix

Our Work

O xCalls: interacting with the OS

O TM as a concurrency bug fix

This Talk

Outline

O

O xCalls: transactional access to OS
services

Design
Results

O TM as a concurrency bug fix

O Conclusions

A challenging world...

O Real world programs frequently take actions
outside of their own memory

Firefox: ~1% critical sections call OS (gaugh TRANSACT *07]

O A single lock may normally protect memory, but
sometimes protect OS state

O Most TM systems apply only to user-level memory

State of the art

~

O Defer [TxOS ;
xen] - Ignore failures

O Undo [LogTM] g

O Global Lock [IrrevTM,OneTM]} Stop the
= Jtomic {

item = procltem(queue);
write (file, principal);
write (file, item->header);

send (socket, item->body);
\[Defer J

}
COMMIT
Perform send

Internet

Deferred
send fails

Contribution

Transactional Program

Legacy xCalls

calls ‘

xCall Library } Runs in user mode
System call interface

Transaction-unaware kernel

O xCall programming interface
Exposes transactional semantics to programmer
Enables /O within transactions w/o stopping the world

Exposes all failures to the program

Atomic execution

O Provide abort semantics for kernel data and |/O

> Expose to programmer when action is
performed

Can reverse action? | Need result? | Execution | Bxample

In-place X write ()

No No Defer X write pipe ()

No Yes Globallock ioctl ()

_ file buffers
=) atomic {

item = procltem(queue);
x_write (file, principal);
x_write (file, item->header);

SHE

Isolation

O Prevent conflicting changes to kernel data made
within a transaction

> Sentinels
Revocable user-level locks
Lock logical kernel state visible through system calls

Thread 1 memory ﬁ'eﬂ Thread 2

mm) atomic {

item = procltem(queue);

item =Qrockte ueue);
X_WIi);
x_write (file, item->header); x_write (fleY it€m->header);

x_write (file, principal);
} }

Error handling

O Some errors might not happen until
transaction commits or aborts

» Inform programmer when failures happen

Handle errors after transaction completes
=) atomic {

item = procltem(queue);

Deferred send: FAILED
err3 = error

x_write (file, principal, &errl);
x_write (file, item->header, &err2);
x_send (socket, item->body, &err3);

J i Defer Internet
if (err COMMIT Handle error

/* Cl| Perform here
}

Summary

O xCall APl exposes transactional semantics
Atomicity
Isolation
Error handling

O Prototype implementation
Executes as user-mode library
Relies on Intel STM for transactional memory

Provides 27 xCalls including file handling,
communication, threading

Evaluation platform

* Transactionalized three large multithreaded apps

— Berkeley DB : locking + logging subsystems (31 tx)
— BIND: logging + memory subsystems (87 tx)

« Configurations
— Native: locks + system calls
— STM :transactions + system calls + global lock

— xCalls: transactions + xCalls

* Run on 16 core (4 x quad) 2 GHz AMD
Barcelona

Performance: Berkeley DB

e Workload: Lockscale
25000

20000

15000
——Native
10000
, 3= --STM
>000 "‘-{;/'—/’4 xCalls

0

0 4 8 12 16
Worker Threads

Database
Transactions/sec

O Global lock kills optimistic concurrency

O xCalls improve concurrency over native coarse-
grained lock

Performance: BIND
 Workload: QueryPerf

30000
o 25000
% 20000 /_/H
o 15000 - . e ——Native
8’ 10000 /// -=-STM

5000 —*= xCalls
0
0 4 8 12 16
Worker Threads

O Transactions scale better than coarse grain locks

O xCalls enable additional concurrency

xCalls Summary

O Targeted use of TM can benefit legacy
programs

O Transactional I/O is possible without
kernel modifications

Outline

O
O

O TM as a concurrency bug fix
Deadlock
Atomicity violations

O Conclusions

Concurrency Bugs

O Fixing concurrency bugs is challenging
Often adhoc [LuASPLOS08]
Hard to get it right
O In Mozilla, fixing one deadlock bug introduced

another
Sep 2000 Nov 2000 May 2001 July 2001
| | | |)
Mozilla #54743 #60303 #79054 #90994

O Existing code may benefit from TM as a
concurrency bug fix

Example: Deadlock in Mozilla
Worker Thread Ul Thread

nsSocketReadRequest::OnRead GlobalWindowlImpl::Close
nsSocketTransport.cpp nsGlobalWindow.cpp

]

nsSocketRequest::Cancel

nsSocketTransport.cppl

&

PrepareAndDispatch
xptcstubs.cpp

Fixing Mozilla Deadlock withTM

Worker Thread Ul Thread

GlobalWindowlImpl::Close
nsGlobalWindow.cpp

nsSocketReadRequest::OnRead
nsSocketTransport.cpp

nsSocketRequest::Cancel

nsSocketTransport.cppl

PrepareAndDispatch
xptcstubs.cpp

Applying TM: Methodology

O Studied 78 previously found and fixed
concurrency bugs in Mozilla, MySQL, Apache

O Classified bugs in 3 categories
Deadlock
Atomicity violation

O Asked 3 questions
Can TM fix the bug!?
Can TM simply fix the bug? } Applicapiity
Can TM efficiently fix the bug!?

Outline

Atomicity violations

O Conclusions

Nalve Deadlock Fix

O Solution:
Replace all locks with transactions

O Benefits:
Easy-to-read code

Optimistic concurrency

Nailve Deadlock Fix Drawbacks

O Widely distributed code changes
All uses of a lock must be replaced

Requires system call support

O Performance overhead
/6% decrease for some bugs with STM

Can We Do Better?

O QObservation:

Only one thread needs to preempt to
break deadlock

O Asymmetric deadlock preemption

Only one thread of a deadlock uses
transactions + tx-safe locks

Remaining threads use only tx-safe locks

Single Module Preemptible Bug Example

O Mozilla (LDAP: result.c, abandon.c)

int waitdmsg (..) int ldap abandon_ext (..)
{ {
== LOCK (CONN LOCK) ; ROOCHKi¢REQ LOCK) ;
G — .. LOCK (REQ LOCK) ;
LOCK (REQ LOCK) ; LOCK (CONN LOCK) ;

. LOCK (CONN LOCK) ;

locked

Fixing Deadlock Bugs Summary

O TM helps fixing 13 of 21 bugs

Preemption fixes 8 bugs
Converting locks to transactions fixes 5 bugs

Remainder require async |/O, involved
condition variables, or modified unrelated
state

O TM-fix for 10 of |13 bugs simpler than
developers’

Fewer lines of code changed
Changes were more localized

Missing Synchronization Bugs

O Missing synchronization:

access to variable never uses
a lock

O Partial synchronization:

Some access don’t use a
lock

O TM benefits:

Localized changes

Localized reasoning

T1

Q%

o X

oX

Atomicity Violation Example
* Apache (httpd-2.0.45: mod_log config.c)

void ap buffered log writer (..)

{
atemiébuffer [buf->outputCount] ;
memcpy &bufsér [bhénpoutputCount] ;
tempmspby € >ettput€ofnt + len;
bufeputpht€fonttput&mpnt + len;
apbufileuwpit&dbnf->handpe) ;

} apr file write(buf->handle) ; it |/()
}

}

O Performs within 3% of developers’ fix

O Changes only one function

Atomicity Violation Bugs Summary

O TM fixes 30 of 38 atomicity violations

Remainder do async I/O, cross modules, or
are long

0O TM-fix for 21 of 30 bugs is simpler
than developers’

_ocalized reasoning about atomicity

_Localized code changes

_ess code involved

Summary

O TM can help fixing 58% of the bugs
studied

Hard problems are still hard.

O TM fix is simpler than developer fix in
/3% of these

O Sophisticated use of TM reduces change
complexity and improves performance

Conclusions

O Transactional memory can benefit existing
programs

O Targeted use reduces change complexity,
performance problems

Highly contested critical sections
Deadlocks, atomicity violations

O System access important for legacy code

Questions!

Related Work

O Operating system access:
TxOs [SOSP’09]
QuickSilver [SOSP’91]
Tx diet libc [TRANSACT’ | 0]

O Concurrency bug repair
Deadlock Immunity [OSDI’'08]
Atom-Aid [ISCA’08],
ISOLATOR [ASPLOS’09]

