
Single-Chip Cloud Computer

Adam Welc, Richard L. Hudson, Tatiana Shpeisman,

Ali-Reza Adl-Tabatabai, and the SSC team

2

HW Architect’s Point of View
 6x4 mesh 2 Pentium™ P54c cores per tile

 256KB L2 Cache, 16KB shared MPB per tile
 4 memory controllers, 16-64 GB total memory

R R R R R R

R R R R R R

R R R R R R

R R R R R R

SYSTEM INTERFACE

L2$1

MPB

Tile area: ~17 mm2
SCC die area: ~567 mm2

CORE 1

CORE 0
L2$0

ROUTER

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

3

Programmer’s Point of View
 48 x86 cores capable of running a full Linux
distribution

 3 memory spaces (/ : on/off-chip)

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

4

SCC Features
 Memory spaces:

– Shared – not cached or non-coherent
– Private – x86 memory model
– MPB – non-coherent (bypasses L2 and requires

invalidation of L1 for valid reads and writes)

 Communication
– RCCE – message passing library utilizing MPB
– Full TCP/IP stack (on-chip and host/device)

 Four-tile power management domains
– V change – millions of cycles (non-blocking API)
– GhZ change – few cycles (blocking API)

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

5

Case Study: JavaScript
 Object-oriented dynamically typed
scripting language

 Limited support for parallelism
– Web workers (in HTML 5) designed to increase

GUI responsiveness
– Web workers can communicate with HTTP

servers via message passing

 SCC viewed as a cluster – utilized only
high-level capabilities

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

6

Parallelizing JavaScript on SCC
 Offload computation from the client
(browser) to the server farm on SCC

 Utilize as many off-the-shelf components
as possible for high productivity
– Client and server code written in pure

JavaScript

– Unmodified client (browser) running on host
– Largely unmodified off-the-shelf execution

engine for servers running on SCC
– Standard libraries and tool-chain used on SCC

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

7

Web App Architecture

 HTTP server’s scripting engine typically
used for dynamic web page generation

 Can be used for general-purpose
computation as well

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

8

Enabling SCC

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

9

Workers: Web  Generic

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

10

Compute Servers

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

11

Infrastructure
 Generic workers on both client and
server side programmed in JavaScript

 Minor modifications to v8cgi wrapper
around Google’s v8 execution engine for
support of compute servers on SCC

 Unmodified browser can only “talk” HTML
– Compute servers “pretend” to be HTML servers

(communication layer written in JavaScript)

– Problem with “single-origin policy”

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

13

Parallel Raytracer
 Based on sequential
JavaScript app from
Google’s JavaScript
V8 benchmark suite

 Workers all 48 cores
 Also tried different
configurations (single
dispatcher core) and
applications (physics
engine) using the
same infrastructure

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

14

Results

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

15

Conclusions
 SCC features

– 48 cores

– Non-coherent shared memory with message
passing as primary programming model

– Extensive power management capabilities

 Low learning curve for potential SSC
software developers:
– Standard tool-chain

– Off-the-shelf components

Single-Chip Cloud Computer

Adam Welc – Intel Labs, Programming Systems Lab

