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HW Architect’s Point of View 
 6x4 mesh 2 Pentium™  P54c cores per tile 

 256KB L2 Cache, 16KB shared MPB per tile 
 4 memory controllers, 16-64 GB total memory 
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Programmer’s Point of View 
 48 x86 cores capable of running a full Linux 
distribution 

 3 memory spaces (      /      : on/off-chip) 
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SCC Features 
 Memory spaces: 

– Shared – not cached or non-coherent 
– Private – x86 memory model 
– MPB – non-coherent (bypasses L2 and requires 

invalidation of L1 for valid reads and writes) 

 Communication 
– RCCE – message passing library utilizing MPB 
– Full TCP/IP stack (on-chip and host/device) 

 Four-tile power management domains 
– V change – millions of cycles (non-blocking API) 
– GhZ change – few cycles (blocking API) 
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Case Study: JavaScript 
 Object-oriented dynamically typed 
scripting language 

 Limited support for parallelism 
– Web workers (in HTML 5) designed to increase 

GUI responsiveness 
– Web workers can communicate with HTTP 

servers via message passing  

 SCC viewed as a cluster – utilized only 
high-level capabilities 
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Parallelizing JavaScript on SCC 
 Offload computation from the client 
(browser) to the server farm on SCC 

 Utilize as many off-the-shelf components 
as possible for high productivity 
– Client and server code written in pure 

JavaScript 

– Unmodified client (browser) running on host 
– Largely unmodified off-the-shelf execution 

engine for servers running on SCC 
– Standard libraries and tool-chain used on SCC 
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Web App Architecture 

 HTTP server’s scripting engine typically 
used for dynamic web page generation 

 Can be used for general-purpose 
computation as well 
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Enabling SCC 
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Workers: Web  Generic 
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Compute Servers 
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Infrastructure 
 Generic workers on both client and 
server side programmed in JavaScript 

 Minor modifications to v8cgi wrapper 
around Google’s v8 execution engine for 
support of compute servers on SCC  

 Unmodified browser can only “talk” HTML 
– Compute servers “pretend” to be HTML servers 

(communication layer written in JavaScript) 

– Problem with “single-origin policy” 
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Parallel Raytracer 
 Based on sequential 
JavaScript app from 
Google’s JavaScript 
V8 benchmark suite 

 Workers all 48 cores 
 Also tried different 
configurations (single  
dispatcher core) and 
applications (physics 
engine) using the 
same infrastructure 
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Results 
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Conclusions 
 SCC features 

– 48 cores 

– Non-coherent shared memory with message 
passing as primary programming model 

– Extensive power management capabilities 

 Low learning curve for potential SSC 
software developers: 
– Standard tool-chain 

– Off-the-shelf components 
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