
Region-Based Dynamic Separation in STM Haskell
(And Related Perspective)

Dan Grossman
University of Washington

Transactional Memory
Workshop

April 30, 2010

Apology

From: Hank Levy (Department Chair)
Date: April 6, 2010
Subject: Upcoming faculty meetings

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 2

Apology

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 3

From: Nicholas Kidd
Subject: Re: [TMW'10] A few announcements

I hereby promise that coffee will be available
throughout TMW'10!

TM at Univ. Washington

I come at transactions from the programming-languages side
Formal semantics, language design, and efficient
implementation for atomic blocks
Software-development benefits
Interaction with other sophisticated features of modern PLs

[ICFP05][MSPC06][PLDI07][OOPSLA07][SCHEME07][POPL08]

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 4

transfer(from,to,amt){
atomic {

deposit(to,amt);;
withdraw(from,amt);;

}
}

An easier-to-use and
harder-to-implement
synchronization primitive

The goal

I want atomic blocks to:
Be easy to use in most cases
Interact well with rest of language design / implementation

Despite subtle semantic issues for PL experts

My favorite analogy [OOPSLA07] : garbage collection is a success
story, for memory management rather than concurrency

People forget subtle semantic issues exist for GC
Finalization / resurrection
Space- x=null)

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 5

Today

Review and perspective on transaction + non-transaction access

A healthy reminder, probably without (much) controversy
But not much new for this expert crowd

Not-yet-published work on specific issue of dynamic separation
Extension of STM Haskell

and outside transactions

Time permitting: Brief note on two other current projects

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 6

Are races allowed?
For performance and legacy reasons, many experts have decided

not to allow code like the following

I can probably grudgingly live with this

But:

Does make it harder to maintain / evolve code

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 7

Thread 1

x = 2;;

Thread 2
atomic {

x = 1;;
y = 1;;
assert(x==y);;

}

Privatization

Alas, there are examples where it is awkward to consider the

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 8

Thread 1

atomic {
r = ptr;;
ptr = new C();;

}
assert(r.f==r.g);;

Thread 2

atomic {
++ptr.f;;
++ptr.g;;

}

initially ptr.f == ptr.g ptr

f g

The Problems

Eager update, lazy conflict detection:
assert

Lazy update:
assert

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 9

Thread 1

atomic {
r = ptr;;
ptr = new C();;

}
assert(r.f==r.g);;

Thread 2

atomic {
++ptr.f;;
++ptr.g;;

}

initially ptr.f == ptr.g
ptr

f g

Solution areas

To support atomic blocks that privatize (and related idioms):

1. Enrich underlying TM implementations to be privatization safe
-offs are acceptable

Important but uncommon cases

2. Disallow privatization
Either soundly prohibited by PL or programmer error

3. Allow privatization only if programmers do more explicit work
Our work, making this more convenient and flexible

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 10

Disallowing privatization
Prior work on static separation takes this approach

Same memory cannot be used inside a transaction and
outside a transaction
Note read-only and thread-local are okay

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 11

Thread local Immutable

Never
accessed in
transaction

See:
NAIT is provably enough for

atomic block
POPL08 * 2

STM Haskell
functional + monads
=> immutable or NAIT

Dynamic separation

Dynamic separation allows objects to transition among
Only accessed inside transactions
Only accessed outside transactions
Read only
(Added by us: thread-local to thread tid)

Explicit language primitives to enact transitions
Example: protect obj transitions obj

Semantics and implementation for C# and AME
[Abadi et al, CC2009, CONCUR2008]

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 12

Uses of dynamic separation

Obvious use: Explicit privatization

Another: more efficient (re)-initialization of data structures than
static separation would allow

Essentially a
Create a large tree in one thread without transactions and
then protect it and make it thread-shared
Resize a hashtable without a long transaction (next slide)

But the (re)-initialization argument is much more compelling if
we can transition an entire data structure in O(1) time/space

For example: If hash table uses linked lists

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 13

Hash table example

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 14

class HT {
T [] table;;
boolean resizing = false;;

void insert(T x){ atomic{ if(resizing) retry
T find(int key) { atomic{ if(resizing) retry
void resize() {

atomic{ if(resizing) return;; resizing = true;; }
unprotect(table);;

protect(table);;
atomic{ resizing = false;; }

}
}

Today

Review and perspective on transaction + non-transaction access

A healthy reminder, probably without (much) controversy
But not much new for this expert crowd

Not-yet-published work on specific issue of dynamic separation
Extension of STM Haskell

and outside transactions

Time permitting: Brief note on two other current projects

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 15

Laura
Effinger-Dean

Why Haskell

In some sense, Haskell is a terrible choice for dynamic separation
The one language where static separation is natural
Monads already enforce static separation of many things

But this makes it an ideal setting for our research
Use dynamic separation only where static separation is
unpalatable
Need a precise, workable semantics from the start, else it will

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 16

Novelties
1. Region-based to support constant-time transition-change for

collection of objects

2. Complement static separation (current default in Haskell)
Allow both approaches in same program (different data)
Use dynamic separation for composable libraries that can
be used inside or outside transactions, without violating

3. Extend elegant formal semantics (including orelse)

4. Underlying implementation uses lazy update
Significant speed-up for some benchmarks by avoiding
transactions that are necessary with static separation

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 17

STM Haskell basics
STM Haskell has static separation

Most data is read-only (purely functional language)
Non-transactional mutable locations called IORefs
Transactional mutable locations called TVars

transactionalize IORefs

The STM monad and IO (top-level) monad are distinct

a top-level-

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 18

atomically :: STM a -> IO a

Adding DVars

From a language-
add a third kind of mutable location for dynamic separation

DVar would be allowed by the type
system to be accessed anywhere

A meta-
dynamically disallow transactions to use it when

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 19

DVars for Haskell
So we add a third monad, DSTM monad, for Dvars

-
level-

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 20

atomically :: STM a -> IO a
protected :: DSTM a -> STM a
unprotected :: DSTM a -> IO a -- not atomic!

DVar
But sequences of actions can be packaged up so that the
same library can be used inside or outside transactions
Trade-off between code reuse and protection-state checks
Not possible in previous approaches to sound separation

Regions
So far, we could just have the DSTM Monad include operations,

including protection-state changes for DVars

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 21

Instead, we add a level of indirection for the protection state, so
one state change can effect a collection of objects (could be 1)

Cost is one implicit word per DVar (avoidable if unneeded)

newDRgn :: DSTM DRgn
a -> DRgn -> DSTM (DVar a)

newDVar :: a -> DSTM (DVar a)
readDVar :: DVar a -> DSTM a
writeDVar :: DVar a -> a -> DSTM a
protectDVar :: DVar a -> IO ()
unprotectDVar :: DVar a -> IO ()
protectDRgn :: DRgn -> IO ()
unprotectDRgn :: DRgn -> IO ()

Novelties
1. Region-based to support constant-time transition-change for

collection of objects

2. Complement static separation (current default in Haskell)
Allow both approaches in same program (different data)
Use dynamic separation for composable libraries that can
be used inside or outside transactions, without violating

3. Extend elegant formal semantics (including orelse)

4. Underlying implementation uses lazy update
Significant speed-up for some benchmarks by avoiding
transactions that are necessary with static separation

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 22

Implementation in one slide

DVar read/write also reads
associated DRgn

Only first access of
the DVar (easy with lazy
update)

Protection-state change is a
mini-transaction that writes
to the DRgn

TM mechanism
synchronizes with txns

There are, uhm, some other
details

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 23

DVar

Non-transactional accesses

Suppose DVar accesses outside of transactions do not check
the DRgn protection-state

Any correct program w.r.t. dynamic separation runs correctly
Any incorrect program is still type safe, but may violate
atomicity

Alternately, we can check all accesses
Have a safe caching mechanism to avoid unnecessary DRgn
access in common cases

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 24

Preliminary Performance

Caveat: Comparing to STM Haskell baseline is not necessarily
state-of-the-art

Approach 1: Take existing STM benchmarks, use all DVars
instead of TVars, measure slowdown: 0-20%

measure speedup: 2-8x for 4 threads (e.g., resizing hash table)

Approach 3: Find an STM Haskell program that would benefit
from dynamic separation and rewrite it: TBD

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 25

Conclusion

Dynamic separation appears to be an elegant and viable
alternative for implementing a PL over a TM that is not

privatization-safe

April 30, 2010 Dan Grossman: Region-Based Dynamic Separation for STM 26

