
Transactional Correctness for Secure Nested Transactions
(Extended Abstract)

Dominic Duggan Ye Wu
Stevens Institute of Technology

dduggan@stevens.edu

Abstract
Secure Nested Transactions are an adaptation of traditional nested
transactions to support the synergy of language-based security and
multi-level database security. They have application in security for
enterprise applications, where transactional semantics are a critical
feature in middleware systems. This article considers correctness
in terms of transactional properties for secure nested transactions.
Correctness is expressed in terms of a labeled transition system, the
TauZero calculus.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms Nested transactions, language-based security.

Keywords Transactions, semantics, serializability.

1. Introduction
Security is a hard problem, one that cuts across many disciplines.
Providing a yardstick for the correctness of secure systems is
equally hard. Information flow control has a long history as a mech-
anism for stating end-to-end security policies. Noninterference and
other properties are stated for the correctness of information flow
in secure systems.

Information flow control was investigated for database systems
in the context of multilevel database systems. One avenue for in-
vestigation has been the interaction of information flow with trans-
action processing in multilevel databases. The particular issue of
interest has been the potential for transactions with “high” secu-
rity level to implicitly signal to transactions with “low” security
level using the synchronization mechanisms provided to ensure
proper isolation levels for concurrent transactions. In the exam-
ple in Fig. 1(a), if transactions T High

1 and T Low
2 , which have high

and low security levels respectively, use locking to synchronize ac-
cess to “low” variables X and Y , then even though T High

1 may be
unable to write to these low variables, it may signal to T Low

2 by
locking one variable and not the other. In this example, ‖ denotes
parallel composition, and X and Y are both low security variables.
The high transaction implicitly sets Z to 1 by locking X and not Y.
Why might the two transactions need to synchronize on variables
at all? The high transaction may be monitoring a database being
updated by low transactions, and the isolation property of trans-
actions dictates that it should only be able view consistent states
of the database, not an intermediate inconsistent state due to other
uncompleted transactions.

This problem has been fairly extensively researched, and for at
least one or two decades, it has been understood that in a situation
such as this, a low transaction should be able to preemptively abort
a high transaction that holds locks that it requires to proceed [1].
This avoids termination leaks such as exemplified above.

intLow X, Y, Z;

THigh
1 : lock(X); while (1) ;

T Low
2 : (lock(X); Z=0;) ‖ (lock(Y); Z=1)

(a) Transaction Processing

intHigh X; intLow Y;
if (X==0) Y=0; else Y=1;

(b) Sequential Programs

intHigh X, Y; intLow Z;
(X=0; Y=1;)
‖ (while (X==0); Z=0;) ‖ (while (Y==0); Z=1;)

(c) Concurrent Programs

Figure 1. Implicit Information Leaks

More recently information flow control has received attention in
programming language security. Here much of the focus has been
on reasoning about implicit control flow by relating control flow to
data flow. For example, the program in Fig. 1(b) is rejected by type-
based security analysis, since it would allow the setting of the “low”
security level variable Y based on the value of the high security level
variable X.

Secure nested transactions comprise an extension of transac-
tions that synthesizes secure transaction processing, as exemplified
by multilevel databases, and programming languages security.

Why should we care about synthesizing these two strands of re-
search? The motivation is the interaction of language-based infor-
mation flow control and concurrency. If we simply add the ability
to fork concurrent threads in a sequential language, we allow leaks
that subvert the information flow guarantees provided by type-
based analysis. This is demonstrated by the example in Fig. 1(c).
It is certainly possible to extend type systems for sequential pro-
grams to prevent low security level threads to depend on the termi-
nation behavior of high security threads [19, 5, 18]. However this
misses the point, as demonstrated by the example in Fig. 1(c), that
there is a need for synchronization between threads at different se-
curity levels. If mechanisms such as locks are not provided, then
applications must implement their own using test-and-set and busy
waiting.

The obvious synthesis of these approaches is to have each thread
in a concurrent programming language execute as a transaction, and
allow “low” threads to pre-empt “high” threads that hold resources
that the latter requires. This is an obvious idea, and simple to state.
However if we assume that transaction aborts are now visible, either
via language primitives for interrogating the state of transactions, or
via the scheduler, then each transaction must have just one security
level, High or Low. This is analogous to the situation in multilevel
databases. However this rules out a class of examples that have

Figure 2. The need for retroactive abort

been the raison d’etre for language-based information flow control,
viz. situations where low-level programs wish to test high-level
variables and then perform high-level actions in a temporary high
context, before resuming execution as low-level code. In the “flat”
transaction model, there is no facility for allowing this. Middleware
environments such as Java Enterprise Edition allow transactional
RPC calls to start new transactions that are independent of any
transaction for the caller bean. However if the caller transaction
subsequently aborts, we are left with an “orphan” transaction that
by all rights should not exist. The preferred behavior is that the
callee should execute as part of the same transaction as the caller.
The problem if one is concerned with information flow control is
that abort of the callee can force abort of the caller transaction.
Therefore low security code cannot call into high security code.
Ever.

Nested transactions were proposed by Moss [16] as an exten-
sion of the flat transaction model to support transactional remote
procedure calls. The nesting of transactions is intended to model a
call tree of nested RPCs. The abort of a transaction forces the abort
of all transactions descended from that transaction, undoing that
RPC and any effects arising from it. On the other hand, abort of a
child transaction does not mandate failure of the parent transaction.

Secure nested transactions are an adaptation of nested transac-
tions to support synthesize multilevel transaction processing and
language-based information flow control. Secure nested transac-
tions provide the same level of synchronization as provided by
transactions, while avoiding implicit information leaks such as ter-
mination leaks. They also allow the mixing of high and low parts
in transactional computations, as demonstrated by the example in
Fig. 1(b). Here secure nested transactions leverage the fact that
abort of a child transaction does not force abort of the parent. So, as
in the sequential case, a “low” computation may test high variables
and perform “high” effects in a temporary “high” context.

Fig. 2 illustrates the challenges that may arise. In this example,
the low transactions T L

1 , T L
2 and T L

3 are cooperating with the high
transaction T H

1.1 in order to create a covert channel that bypasses
the level restrictions on information flow. T H

1,1 is a child of T L
1 .

The high child transaction T H
1,1 acquires the lock for the variable X,

in order to establish a covert channel to a low transaction. This high
transaction commits, releasing the lock on the variable to its parent
(since its commitment must be tentative). The low transactions T L

2

and T L
3 attempt to acquire locks on variables X and Y, respectively.

T L
3 acquires the lock on Y, prints a message to this effect, and

commits. Since it is outside of any other transaction, its effects

are now publicly visible. On the other hand, T L
2 is blocked on

attempting to lock X, which was originally locked by T H
1,1. Were

the latter still active, it would be forced to abort by T L
2 and the lock

released. However the lock is now held by the parent of the high
transaction, T L

1 , even if this low parent is unaware of the lock it
has acquired via the actions of its child. To fix this problem, we
require that the high child transaction T H

1,1 of T L
1 be retroactively

aborted. This is possible because the effects of any successful
transactions cannot be made visible outside a nested transaction
until the root transaction succeeds, and the low parent of a high
transaction obviously cannot be aware of whether its high child
aborted or committed.

Describing the semantics of retroactive abort imposes some
challenges. Recent descriptions of transactional semantics for pro-
gramming languages [4, 11, 15] describe transactional computa-
tions where the underlying transactional “machinery” is hidden in
the language semantics. We have two reasons for not adopting this
approach. First, our intention is to reason about security proper-
ties using techniques of observational equivalence from concur-
rency theory, since we are concerned about information leaks in po-
tentially nonterminating concurrent execution. Second, rather than
providing an operational semantics that effectively suggests a par-
ticular implementation of retroactive abort, we decouple the details
of state management from the operational semantics using an ab-
straction of logs. One may consider logs as a collection of logical
statements describing transaction state, and certain operations in
the language are predicated on properties being deducible from the
logs. For example, once a transaction has aborted, that property
enables the restoration of messages that it has consumed. Logs are
also not far removed from practical implementations, and protocols
such as two-phase commit can be leveraged to check required log
properties during the commit of a root transaction.

Our approach is based on a kernel language that has a straight-
forward implementation. We term our language TauZero. Its de-
scription is in three parts: a core language derived from the asyn-
chronous pi-calculus, a global collection of logs, and a context of
global names (including channel names and transaction identifiers).
We use this language to reason about transactional properties of se-
cure nested transactions.

This language is based on the asychronous pi-calculus, a variant
of Milner’s pi-calculus that accommodates non-blocking message-
passing1. However our language is not a process calculus. Because
all channel names are given global scope, there is no way to reason
compositionally about the observational equivalence of processes.
Neverthess this language is good enough to provide a trace-based
semantics that is useful for reasoning about transactional properties
such as serializability.

Furthermore, in other work [7] we have developed a processed
calculus called TauOne, and used it to verify the security correct-
ness of secure nested transactions. Moreover we are able to relate
computations in TauZero and TauOne, using a notion of contex-
tual constraint entailment that is novel. We provide more discussion
of TauOne in Sect. 6.

Several bodies of work demonstrate how higher-level languages
may be compiled to various process calculi, and we regard the
translation of higher-level languages, extended with retroactive
abort, into our calculus as a worthy topic for further research.

We introduce TauZero in Sect. 2. We describe our opera-
tional semantics in Sect. 3. We consider transactional correctness

1 It is worth noting that asynchronous message-passing alone does not sup-
port “write-ups” from low to high processes, because of the possibility of
traffic analysis of low messages if they can be consumed by high processes.
Therefore our semantics includes a special form of message for supporting
such communication, that is handled in a linear fashion by the semantics.

C ∈ Channel Type ::= (
−→
C)` Message channel

| Lock(
−→
C)` Lock

| Unit` Unit
` ∈ Security Level ::= High | Low

T ∈ Type ::= C Channel type
| Trans(`) Transaction type
| Event(

−→
t , `) Event type

w ∈ Name ::= a | −→t | k
v ∈ Value ::= a | x | ()

A ∈ Agent ::=
−→
t P Agent process

| A1 | A2 Composition of agents
P ∈ Proc ::= v̂−→v Send message

| ǎ−→x P Receive message
| (v1=v2)→ P1[]P2 Internal choice
| P1 + P2 External choice
| −→

t [P] Launch transaction
| P1 | P2 Fork process
| (νa:C)P New channel
| repl P Replicate
| stop Stopped
| 2 Commit or abort
| await t[2] then P Test status

2 ∈ Status ::= � Commit
| � Abort

V ∈ Env ::= ε Empty env
| (a : C) Channel decl
| (t : Trans(`) Transaction decl
| (k : Event(

−→
t , `)) Event declaration

| V1.V2 Append envs
L ∈ Log ::= true Empty log

| L1 ∧ L2 Join logs
| k::

−→
t â−→c Log send

| k::
−→
t ǎ−→c Log receive

| k1 ↘ k2 Mesg exchanged
| k undone Undone receive
| k1 y k2 Lock transferred
| −→

t � Trans commit
| −→

t � Trans abort

Figure 3. TauZero Syntax

in Sect. 4. We consider related work in Sect. 5, while Sect. 6 pro-
vides our conclusions.

2. TauZero: A Calculus for Secure Nested
Transactions

The TauZero language is a two-dimensional calculus of transac-
tions and dependencies, based on Milner’s pi-calculus. We assume
a core language of asynchronous message-passing, and we extend
this familiar idea with a transactional semantics. Our calculus can
be viewed as a formal representative for asynchronous messaging
systems that are at the core of modern service oriented architec-
tures, providing a transactional semantics for adding messages to,
and removing messages from, message queues. Example systems
include Java Messaging System (JMS), Microsoft Queuing System
(MSQS) and IBM’s MQSeries.

The syntax of the language is provided in Fig. 3. We assume the
following spaces of variables and names:

a, b, c, . . . ,∈ Channel name
x, y, z, w ∈ Variable
−→
t ∈ Transaction id

k ∈ Event id

The only values in the language are channel names, represented
by constants a, b, c, Some channels have special significance
in their use as locks: they have the property that they are always re-
leased by a transaction, whether that transaction commits or aborts.
Channels and locks have security levels. These security levels strat-
ify channels into high and low channels, with high channels only
usable by high processes and similarly for low channels and low
processes. Locks are similarly stratified into high and low, but low
locks may be acquired by high processes.

We assume the definition of metafunctions bn() and fn()
for computing the set of bound and free names, respectively, in a
syntactic term. We also assume the definition of the metafunction
fv() for computing the set of free variables in a syntactic term.

Each transaction is identified by a sequence of transaction iden-
tifiers

−→
t = (t1, . . . , tk) for some k. Here t1 is intended to be the

root transaction, and the complete path identifies a nested transac-
tion and all of its ancestors. We denote the prefix relation between
sequences by ≤, so we have:

−→
t1 ≤

−→
t2 iff

−→
t2 =

−→
t1 .
−→
t′1

where the period denotes sequence concatenation. Note that
−→
t1 ≤−→

t2 means that the former transaction is an ancestor of the latter.
This is used extensively in the sequel.

The semantics of the language needs to track dependencies be-
tween transactions. In one dimension of this two-dimensional cal-
culus, the dependency is from parent transactions to child transac-
tions. Failure of the parent transaction forces failure of the child,
even if the child has tentatively committed. This is to be consistent
with the view that no updates propagate from an aborted transac-
tion, including from any of its child transactions. Therefore a trans-
action type includes the name of its parent transaction, to record
this dependency.

There are richer dependencies in our calculus than parent-child.
Even when a high transaction commits and its effects are consumed
by other transactions, it is possible for the original high transaction
to be retroactively aborted and any high successors be subsequently
aborted along with it. This requires that TauZero track dependen-
cies between transactions due to exchange of messages.

Fig. 4 explains why this is necessary for secure nested trans-
actions, but not for classical nested transactions. Fig. 4(a) demon-
strates an example where t0, t1 and t2 are sibling transactions. If
t2 consumes a message output by t0, then the abort of t0 would
mandate the abort of t2, indicating a failure dependency. However
the only way that t2 can receive a message output by t0 is if the
latter commits. If t0 tentatively commits, then it can only be forced
to abort if its parent aborts. But if the latter aborts, then t2 must
also be forced to abort. Therefore for classical nested transactions,
there is no need to track failure dependencies between transactions
(beyond parent-child relationships).

Fig. 4(b) demonstrates how secure nested transactions compli-
cate matters. In this example, t0 is a high transaction that has ac-
quired a lock a, and subsequently (tentatively) committed.. The sib-
ling t2 has consumed a message c produced by t0. The parent trans-
action has not yet committed. If a low transaction now preemptively
aborts t0 in order to obtain the lock a, this will induce an abort of t2.
The failure dependency of t2 on t0 is due to the message produced
by t0 and consumed by t2. Meanwhile the intermediate low trans-
action t1 is (necessarily) unaffected. This demonstrates the need
to track dependencies due to message exchanges in the semantics.
Specifically these dependencies are recorded in the logs.

Therefore we need to track dependencies to propagate cascad-
ing aborts of high transactions (although aborts will only cascade
within the scope of a parent transaction that contains the high trans-
actions that abort). In order to track dependencies as a result of

(a) Nested transactions (b) With retroactive abort

Figure 4. Failure dependencies

message-passing and synchronization, we use event identifiers k to
uniquely identify significant events in the logs.

A crucial point to note here is that acquisition of a lock by a
transaction does not induce a failure dependency from transaction
owning the lock to the transaction acquiring the lock. In the exam-
ple in Fig. 4(b), if

−→
t1 acquires a lock from

−→
t0 ,then the abort of

−→
t0

does not induce the abort of
−→
t1 . This is due to the restricted access

to locks provided to transactions: a transaction cannot duplicate or
destroy a lock. The type rules require that locks are generated at
the top level, outside any transaction. Once acquired, a log entry
records the holding of the lock by the transaction, until abort or
commit of that transaction makes it available to other transactions.
The release of the lock is guaranteed by the semantics of abort and
commit of transactions. In effect we guarantee that locks are han-
dled in a linear fashion: once acquired, a lock is always released.
Rather than relying on linear types to statically enforce the linear
handling of locks, we rely on the semantics of transactions to en-
force this handling.

The syntax of types is provided in Fig. 3. We assume a security
type system to prevent information flow leaks, by classifying data
as High or Low. The details of this type system are provided in a
technical report [7].

These security levels ` decorate the types of message channels
(
−→
C)` and locks Lock(

−→
C)`, and reflect restrictions on information

that can be exchanged as a result of synchronization. Transactions
are either “high” or “low,” as reflected by their types, and can
only have effects (sending and receiving of messages) based on
their allowed security level. Whereas in sequential languages, a
low thread can raise its security level to high in order to make
high side effects, in our language a low transaction must spawn
a high child transaction to have high effects. As discussed earlier,
if high and low processes occupied the same transaction, a covert
channel would be available by having the high process abort the
shared transaction.

Although message-passing is asynchronous, we only allow mes-
sages to be exchanged between processes of the same security level.
Allowing a high security level process to receive a message sent by
a low security level process would allow information leaks due to
low processes being able to detect contention between high and low
processes for such messages. Instead we provide explicit locks to
enable synchronization between high and low security level pro-
cesses. There is a great deal of overlap between the semantics of
messages and locks, except in the treatment of lock release for a
committed process.

Both messages received and locks acquired by a transaction are
recorded in the logs. If the transaction aborts, these message re-
ceive and lock acquisition events are undone, releasing the mes-
sages and locks back to their original state. As a transaction exe-
cutes, messages that are intended to be the output of that transaction
are “buffered” by limiting their visibility until the transaction com-
mits. Once the transaction commits, those output messages become
visible to the parent transaction, and may be received by processes
in that parent transaction or descendants of the parent transaction. If
a released message is received by a descendant of the parent trans-
action (or of some ancestor of the sending transaction), then that
message receipt is recorded in the log, and a failure dependency
established between the sending and receiving transactions.

These failure dependencies take on more significance when
we allow transactions of low security level to retroactively abort
transactions of high security level. A high security transaction may
have acquired the lock, committed, and released a message. This
message was received by a (high) sibling, introducing a failure
dependency. The committed high transaction is now retroactively
aborted, because it still holds the lock required by a low transaction.
This abort forces abort of the other transaction that has become
failure dependent upon it. Assuming both high transactions have
a low parent, the latter is unaware of the changing status of its
children.

Locks acquired by transactions must be treated judiciously once
those transactions commit. The locks should be released back to the
parent transaction. Therefore logs track the acquisition of locks by
a transaction, both for undoing their acquisition if the transaction
aborts, and for releasing those locks back to the parent if the
transaction commits. Unlike messages, locks do not induce failure
dependencies. In particular, if a transaction acquires a lock after it
was released by a committed transaction, it does not become failure
dependent on retroactive abort of the latter transaction.

3. Operational Semantics
In this section we consider the operational semantics for TauZero.
The syntax of the language is provided in Fig. 3. The language
includes asynchronous message sending and blocking message re-
ceive operations. The message send operation â−→v outputs values−→v on channel a, where the latter may be sent as part of another
message between processes. The message receive operation ǎ−→x P
unpacks a message received on channel a into local variables −→x ,
and then executes the continuation process P . The accent on the
channel names is intended to suggest “upload” and “download” re-

spectively. We enrich these basic message-passing operations with
both internal and external choice operations ((v1=v2) → P1[]P2

and P1+P2, respectively), as well as a replication operation repl P .
The latter is useful for defining recursive processes. We assume that
all processes that are ready to input a message have the form

−→
t

X
{ǎ−→x P}.

In other words, a process may use external choice to select between
different input channels. A facility for timeouts could easily be
added. A process may launch a new transaction

−→
t [P] that executes

nested within any transaction that encompasses the launching pro-
cess. The language includes parallel composition and name scop-
ing constructs for each of the forms of constants in the language, as
well as a stopped process stop.

The semantics includes a log L. The latter holds information
both for reasoning about the status of transactions (e.g. committed
or aborted), and also for recovering from the abort of a transactional
by undoing any visible effects it has had. The latter take the form of
messages consumed or locks acquired during the execution of the
transaction. The sending or receiving of a message, and the transfer
of a lock, is recorded with a unique event identifier k in the log. The
type of this event identifier reflects the transaction in which event
occurred. The transaction in turn has an associated security level.

Logs are an important part of controlling the complexity of
the transaction calculus. In general configurations in the semantics
have components of the form

−→
t P , reflecting that every process

P executes with respect to a (nested) transaction
−→
t . We refer to

components of this form as agents A. The operational semantics
are made relatively simple by separating the evolution of process
execution from the meta-reasoning about when operational steps
are enabled, and what information must be logged to enable the
computation.

There are various forms of log rules added during evaluation:

1. A log entry of the form k::
−→
t â−→c requires the sending of a

message or generation of a lock. If the former, the message is
sent by a transaction operating within the transaction

−→
t . If the

latter, the type system requires that the lock be generated at top-
level, outside the scope of any transaction (| −→t |= 0).

2. A log entry of the form k::
−→
t ǎ−→c records the receipt of a

message or acquisition of a lock by a process executing in the
transaction

−→
t .

3. A log entry of the form k1 ↘ k2 relates a receive event k2 to the
corresponding send event k1. It has several purposes. One is to
establish a failure dependency from the sending to the receiving
transaction: If the former is aborted, the latter is required in
turn to abort. Another purpose is to relate a receive event to the
corresponding send event, so that if the latter is undone in the
process of aborting a transaction, the corresponding message to
be restored is identified.

4. A log entry of the form k undone denotes that the action
logged with event identifier k in the logs has been undone.
This corresponds to a message receive or lock acquisition event
that has been undone because the corresponding transaction has
aborted. This type of log entry is used to ensure that message
receives are only undone once in the event that a transaction
aborts.

5. A log entry of the form k2 y k1 denotes that the lock ac-
quired in the event labelled with k2 has been released (or “anti-
inherited”) from a transaction to one of its ancestor transac-
tions, as a result of the former transaction having committed.
The lock was then acquired by a descendant of that ancestor
transaction, in a lock acquisition event labelled k1. The actual

anti-inheritance of locks up the transaction tree is implicit in
the committal of ancestor transactions, and fresh log entries for
a lock are only added when descendant of one of these ancestors
(a “cousin“ transaction) acquires the lock. A log entry reflecting
the ownership of this lock by the cousin transaction is recorded
in the logs with an event identifier k1. It is the counterpart to
the k2 ↘ k1, but where the lock has already been acquired in
the transaction tree and now its ownership is being transferred
within that tree.

The reduction rules use various judgements to check precondi-
tions by reference to the log:

V ,L ` k::A Identifiable log entry
V ,L ` A Anonymous log entry
V ,L ` k1 ↘ k2 Mesg or lock acquired
V ,L ` k1 y k2 Lock released
V ,L ` k undone Action undone

V ,L ` −→t running Transaction still running
V ,L ` −→t aborted Transaction aborted
V ,L ` −→t committed

−→
t0 Transaction committed

V ,L ` k::A terminal Terminal lock ownership
V ,L ` k::A undoable Undoable receive
V ,L ` k::A transferable

−→
t Transferable lock

V ,L ` k::A preemptible
−→
t2 y −→t1 Preemptible trans

V ,L ` k1 ; k2 Failure dependency
V ,L ` k1

∗y k2 Transfer of ownership

The first five judgements correspond to simply looking up a
log entry, while the remaining judgements are based on inferences
drawn from the contents of the log.

The operational semantics of TauZero are specified using re-
duction rules of the form:

(V1,L1, A1)⇒ (V2,L2, A2) Internal reduction

and using reaction rules of the form

(V1,L1, A1)
−→
t−−→ (V2,L2, A2) Visible reaction

(V1,L1, A1) −→ (V2,L2, A2) Internal reaction

The reduction steps correspond essentially to local unfolding in the
semantics: unrolling loops where necessary, unfolding condition-
als, forking new threads, launching new transactions, etc. The reac-
tion rules correspond to interactions between transactions: message
and lock exchange, preemption of all processes in a transaction, as
well as committing or aborting a transaction, and testing to see if a
child transaction has committed or aborted.

Both reduction and reaction steps potentially modify the context
V and the logL. Hence the context and log are outputs from as well
as inputs to each reduction step. The visible reaction rules expose
the transaction in which the computation step happens. These rules
include: a message receive or lock acquisition step (which may
consume a message from an ancestor transaction or from the “top
level”), a transaction commit step (that releases messages and locks
that heretofore had been confined to a child transaction), and a
transaction abort step (that releases messages and locks that had
been consumed by the transaction before it aborted). We use the
notation

(V1,L1, A1)
[
−→
t]−−→ (V2,L2, A2)

to denote a reaction step that may be either visible or internal, with
the label

−→
t optional.

4. Correctness
Define the following notions of repeated reaction steps:

(a) Receipt and transfer
(b) Chained transfer

Figure 5. Receipt of message/lock and transfer of ownership

(V ,L, A) =⇒ (V ′,L′, A′)

iff

8><>:
V = V0,L = L0, A = A0,
V ′ = Vn,L′ = Ln, A′ = An

and (Vj ,Lj , Aj) −→ (Vj+1,Lj+1, Aj+1)
for j = 0, . . . , n− 1

(V ,L, A)
−→
t

==⇒ (V ′,L′, A′)

iff

(
(V ,L, A) =⇒ (V0,L0, A0),

(V0,L0, A0)
−→
t−−→ (V ′,L′, A′)

(V ,L, A)
(
−→
t1 ,...,

−→
tn)

======⇒ (V ′,L′, A′)

iff

8>><>>:
V = V0,L = L0, A = A0,
V ′ = Vn,L′ = Ln, A′ = An

and (Vj ,Lj , Aj)
−−→
tj+1

===⇒ (Vj+1,Lj+1, Aj+1)
for j = 0, . . . , n− 1

The first of these corresponds to a sequence of zero more in-
visible reaction steps (one for which we do not record transaction
interactions, such as testing whether a transaction has succeeded or
failed). The second of these corresponds to a sequence of zero or
more invisible reaction steps, followed by a visible reaction step.
The last of these corresponds to a sequence of zero or more visible
reaction steps, where there may be invisible reaction steps between
each one of these visible steps.

To state a correctness theorem for nested transactions we need
some auxiliary definitions. We first define a notion of equivalence
between final configurations, based on the output messages that
configurations are ready to offer.

Definition 4.1. Define that (V ,L, A) can output
−→
t â−→c , written

(V ,L, A) ⇑ −→t â−→c if and only if:

1. a is a message channel: V (a) = (
−→
C)`.

2. (V ,L, A) =⇒ (V ′,L′,−→t0 â−→c | A′).
3. V ′,L′ ` −→t0 committed

−→
t .

4. L′ 6` −→t aborted.

Recall that an internal reaction step cannot include a transaction
commit or abort operation. We use this to define a notion of final
state equivalence between configurations of the operational seman-
tics:

(V1,L1, A1) ≈ (V2,L2, A2)

if and only if

1. V1(X) = V2(X) for X ∈ dom(V1) ∩ dom(V2), and

2. (V1,L1, A1) ⇑ −→t â−→c if and only if (V2,L2, A2) ⇑ −→t â−→c .

Definition 4.2. Assume (V ,L, A)
−→−→
t

==⇒ (V ′,L′, A′). We say that−→−→
t is a weakly nested trace if, for all i1, j and i2 such that
i1 < j < i2 and

−→
ti1 =

−→
ti2 , we have that

−→
ti1 ≤

−→
tj or

−→
tj ≤

−→
ti1 .

We say that
−→−→
t is a nested trace if, for all i1, j and i2 such that

i1 < j < i2 and
−→
ti1 =

−→
ti2 , we have that

−→
ti1 ≤

−→
tj ..

Define a transaction to be an access if it contains no subtransac-
tions. Say that a transaction is proper if message-passing operations
occur only within accesses.

Theorem 1 (Serializability). Suppose (V1,L1, A1)
−→−→
t

==⇒ (V2,L2, A2).
Then there is some V3,L3, A3 such that:

1. (V1,L1, A1)

−→−→
t′

==⇒ (V3,L3, A3).
2. (V2,L2, A2) ≈ (V3,L3, A3).

3.
−→−→
t′ is a weakly nested trace.

−→−→
t′ is a nested trace if all transac-

tions in A1 are proper transactions.

As with classical nested transactions, a commit of a non-root
transaction is only tentative, since its commit may be aborted by
the abort of an ancestor transaction. However we can verify a dura-
bility property, that once the root transaction has aborted, then the
outputs of a committed transaction are permanent. We verify this by
defining an erasure function on processes that removes uncommit-
ted transactions. All operations that affect the logs monotonically
add to the logs. The erasure function removes aborted transactions,
and removes boundaries for committed transactions, exposes the
effects of committed transactions at the “highest” (transaction tree)
level where the effects are as yet uncommitted. Once a transaction
has been committed all the way to the root, its effects are exposed
as top-level messages and locks that cannot be revoked. We omit
the details for lack of space.

5. Related Work
Birgisson and Erlingsson in [3] present the semantics and imple-
mentation for transactional memory introspection (TMI) that sup-
ports to enforce security policies under a multiple transaction con-
text. Cohen, Meyden and Zuck [6] develop an access control model

based on Rushby’s work [17] to reason about information flow se-
curity in their extended system, caused by transaction aborting. All
of these works essentially extend work in multilevel databases to
software transactional memory.

Transactions have at various points received interest from the
programming languages community. The Argus, Camelot and
Avalon languages, among several others, incorporated nested
transactions to support a transactional semantics for nested RPC
[13, 20, 8]. Black et al [4] provide an equational characterization of
the ACID properties of transactions. Jagannathan et al [11] provide
an operational semantics for transactions in terms of an extension
of Featherweight Java [10]. Their calculus supports both nested
and multi-threaded transactions, and is agnostic as to whether con-
currency control is optimistic or pessimistic. Their main result is
the verification of serializability for their semantics. Harris et al [9]
provide an operational semantics for software transactional mem-
ory abstractions in Haskell, using a monadic semantics to ensure
isolation, although without nested transactions. Wojciechowski
[21] verifies isolation for a language with nested transactions, ex-
tending lock types to ensure that concurrency control is properly
attained. Moore and Grossman [15] provide a higher-level opera-
tional semantics for nested transactions, one that allows them to
investigate several variations on transactional semantics. They use
an effect system to ensure isolation of transactions, analogous to the
use of monads [9] or extended lock types [21], but abstracting from
the operational details of synchronization. This approach is in that
respect similar to that of Jaganathan et al. In this framework, they
consider various strategies for multi-threaded transactional com-
putation, including scenarios where non-transactional code may
access memory concurrently with transactions. Their type and ef-
fect system ensures a weak isolation property for such scenarios. A
transaction is always isolated from other threads because no thread
may access shared memory if another thread is in a transaction.

The concerns for the current article are clearly very different.
Our concern is providing an operational semantics for secure nested
transactions, in particular with retroactive abort. While the afore-
said approaches are motivated by the need for operational mod-
els for software transactional memory, our concern is in reasoning
about both transactional and security properties. Thus for example
the approach of Moore and Grossman is too high-level for our pur-
poses: They model aborted transactions as transactions that never
start in a non-deterministic semantics, which elides many opera-
tional details that may be the source of attack vectors. The reliance
on type systems in many of the aforesaid approaches to ensure iso-
lation also mitigates their usefulness for our purposes. Indeed, it is
already known how to use linear type systems to ensure isolation
in concurrent program, without information leaks [12]. The moti-
vation for this work is to consider approaches to controlling infor-
mation flow that shift the focus from static approaches (beyond a
security type system) to the dynamic approach of transactional ex-
ecution.

Bertino et al [2] consider noninterference for nested transac-
tions. They are principally concerned with the issue of starva-
tion of high transactions in multi-level databases. Rather than pre-
empting a high transaction if it holds a lock that a low transaction
requires, they introduce “signal locks” which are essentially call-
backs that low transactions use to notify high transactions of up-
dates on shared variables. This allows high transactions to decide
what to do when they dynamically discover a race condition. The
aforesaid paper extends the approach of signal locks from flat to
nested transactions. If a signalled high transaction chooses not to
abort, there is no guarantee of serializability between transactions
at different levels. If they choose to abort, then there is no longer
any guarantee of lack of starvation for high transactions. This work
does not consider the issue of locks anti-inherited from high to low

transactions, which is the motivation for retroactive abort. In the
locking rules in Sect. 4.2 in [2], a transaction is not able to obtain a
lock “retained” by another transaction, unless the latter transaction
is one of its ancestors. In terms of the example in Fig. 2, transac-
tion T L

2 would be blocked from acquiring the lock implicitly held
by transaction T L

1 .

6. Conclusions
We have described the semantics of secure nested transactions in
terms of a language inspired by a process calculus, though it is
not in fact a process calculus. In particular, the fact that all chan-
nels names are globalized in the semantics makes this inappropriate
for reasoning about observational equivalence. In other work [7],
we have developed a true process calculus, TauOne, that extends
TauZero with local scoping of channel names. The motivation for
this work is exactly to reason about security properties, in partic-
ular, to draw on results in process equality theory to reason about
noninterference independent of transactional properties. This result
has profound implications for the system, however. In TauZero,
all logs are global, and so reaction and reduction rules for compu-
tation can interrogate those logs for preconditions that are required
for rules to fire. In TauOne, on the other hand, compositionality
requires that log entries be distributed amongst processes descrip-
tions. Since reaction and reduction rules no longer have global logs
to interrogate, they instead fire in the semantics with logical con-
straints on the surrounding log context. These constraints propagate
upwards through the context of a rule firing, constraining the forms
of log entries that can appear in the context.

This “local” semantics is intimately related to the global se-
mantics of TauZero. The logical constraints on the firing rules
in TauOne are derived from the preconditions on the firing rules
in TauZero. Computations in TauOne are related to those in
TauZero using a notion of “constrained contextual entailment.”
The same coarse trace-based equivalence found in TauZero may
be imposed on TauOne. However the point of TauOne is to use
stronger notions of process equivalence, in particular observational
equivalence, to reason about security properties independent of
transactional properties such as serializabiity.

Our motivation for TauZero is the relative simplicity of its se-
mantics. Specifying reaction and reduction rules in terms of global
preconditions (specified on the global logs) is relatively simple to
explain. Localizing this with the constrained semantics of TauOne

brings an extra level of complexity, that we prefer to relegate to
reasoning about security properties such as noninterference. We
claim that TauZero is particularly appropriate for reasoning about
transactional correctness because serializability is fundamentally a
state-based property. As formulated for databases, the equivalence
of schedules, upon which seriailizabilty is based, is derived from
the state of the database at the conclusion of different schedules.
The coarse-grained equivalence in TauZero only records the inter-
leaving of different transactions. It is in this sense reminiscent of
the technique of input-output automata, used to verify many prop-
erties of traditional nested transactions [14].

We do not envision any issues with extending this semantics to
other synchronization strategies, such as timestamp ordering and
multi-version concurrency control. Here we can leverage the fact
that logs decouple the form of synchronization from the details
of the underlying language, a completely conventional message-
passing language. Optimistic concurrency control strategies can be
incorporated by redefining the rules for predicates that are used
to interrogate the logs, e.g., redefining the rule that currently only
makes a message visible outside a transaction when that transaction
commits.

References
[1] V. Atluri, S. Jajodia, and B. George. Multilevel Secure Trans-

action Processing. Kluwer Academic Publishers, 1999.

[2] Elisa Bertino, Barbara Catania, and Elena Ferrari. A nested
transaction model for multilevel secure database management
systems. ACM Trans. Inf. Syst. Secur., 4:321–370, November
2001. ISSN 1094-9224.

[3] Arnar Birgisson and Úlfar Erlingsson. An implementation and
semantics for transactional memory introspection in haskell.
In PLAS, pages 87–99, 2009.

[4] A. Black, V. Cremet, R. Guerraoui, and M. Odersky. An equa-
tional theory for transactions. In FST TCS 2003: Foundations
of Software Technology and Theoretical Computer Science,
lncs, Mumbai, India, 2003. sv.

[5] Gérard Boudol and Ilaria Castellani. Noninterference for
concurrent programs and thread systems. Theor. Comput. Sci.,
281(1-2):109–130, 2002. ISSN 0304-3975.

[6] Ariel Cohen, Ron van der Meyden, and Lenore D. Zuck.
Access control and information flow in transactional memory.
In Formal Aspects in Security and Trust (FAST), 2008.

[7] Dominic Duggan and Ye Wu. Security correctness for secure
nested transactions. Technical Report 2011-3, Stevens Insti-
tute of Technology, May 2011. http://www.jeddak.org/
Results/Stevens-CS-TR-2011-3.pdf.

[8] J. Eppinger, L. Mummert, and A. Spector, editors. Camelot
and Avalon: A Distributed Transaction Facility. Morgan
Kaufmann, 1993.

[9] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable memory transactions. In ACM Conference on Princi-
ples and Practice of Parallel Programming, 2005.

[10] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight Java: A core calculus for Java and GJ. In Proceed-
ings of ACM Symposium on Object-Oriented Programming:
Systems, Languages and Applications, Denver, CO, 1999.
ACM Press.

[11] S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A trans-
actional object calculus. Science of Computer Programming,
2005.

[12] N. Kobayashi. Type-based information flow analysis for the
pi-calculus. Acta Informatica, 2003.

[13] Barbara Liskov. Distributed programming in Argus. Commu-
nications of the ACM, 31(3), March 1988.

[14] Nancy Lynch, Michael Merritt, William Weihl, and Alan
Fekete. Atomic Transactions. Morgan-Kaufman, 1994.

[15] K. Moore and D. Grossman. High-level small-step operational
semantics for transactions. In Proceedings of ACM Sympo-
sium on Principles of Programming Languages, 2008.

[16] J. E. B. Moss. Nested Transactions: An Approach to Reliable
Distributed Computing. MIT Press, 1985.

[17] J. M. Rushby. Noninterference, transitivity and channel-
control security policies. Technical report, SRI, 1992.

[18] A. Sabelfeld. Semantic Models for the Security of Sequential
and Concurrent Programs. PhD thesis, Chalmers University
of Technology and Gothenburg University, Gothenburg, Swe-
den, May 2001.

[19] Geoffrey Smith and Dennis Volpano. Secure information flow
in a multi-threaded imperative language. In Proceedings of
ACM Symposium on Principles of Programming Languages,

pages 19–21, 1998.

[20] A. Spector and K. Swedlow. Guide to the Camelot distributed
transaction facility: Release 1. Technical report, Carnegie
Mellon University, 1987.

[21] P. Wojciechowski. Isolation-only transactions by typing and
versioning. In ACM Conference on Principles and Practice of
Declarative Programming, 2005.

