
THE UNIVERSAL 
TRANSACTIONAL MEMORY 

CONSTRUCTION
Jons-Tobias Wamhoff and Christof Fetzer

Dresden University of Technology, Germany

1



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

MOTIVATION

• Universal construction

• Shows how to convert sequential algorithm into concurrent 
wait-free algorithm

• Can one base such a construction on TM?

•Wait-free progress for all correct operations

• Tolerate crashes and non-terminating operations

2



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

ASYNCHRONOUS MULTICORE 
SYSTEM MODEL (AMSM)

• Asynchronous model with features of 
current multi-core systems

• Performance counters for executed 
cycles per thread

• Size of memory is bound

•Operations (transactions) can be 
executed by any thread

• Compare-and-Swap (CAS), 
Fetch-and-Increment (FAI)

3

Thread n

Operating System

Thread 1
Perf Ctr 1 Perf Ctr n

Code Code

Transactional Memory

Shared Memory



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

Thread n

Operating System

Thread 1
Perf Ctr 1 Perf Ctr n

Code Code

Transactional Memory

Shared Memory

AMSM CRASH FAILURES

• Threads can crash (stop taking steps) 
caused by:

•Operating system, hardware, signal: 
not detectable in AMSM

• Program code (bug): detected by 
runtime and converted in exception

4



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

AMSM PROGRAMS

• Log defines total order on a sequence of 
invocations (operations)

• FIFO sequential execution

• Multiple logs executed in parallel

• Invocations (transactions) applied to shared 
memory

• Sequential object to transform into wait-free 
linerizable object

• Transactions can be non-terminating

• Terminate correct transactions within finite 
number of steps

5

Log 1Log 0

In
vo

ca
tio

n 
0

txBegin
txRead
txWrite
txCommit

S1

txBegin
txRead
txWrite
txCommit

S2

txBegin
txRead
txWrite
txCommit

S3

txBegin
txRead
txWrite
txCommit

S4

In
vo

ca
tio

n 
1



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

INVOCATION PROCESSING

How can one 
process invocations 
from k logs using n 
threads in a finite 
number of steps?

6

Thread n

Operating System

Thread 1
Perf Ctr 1 Perf Ctr n

Code Code

Transactional Memory

Shared Memory
Log 1Log 0

In
vo

ca
tio

n 
0

txBegin
txRead
txWrite
txCommit

S1

txBegin
txRead
txWrite
txCommit

S2

txBegin
txRead
txWrite
txCommit

S3

txBegin
txRead
txWrite
txCommit

S4

In
vo

ca
tio

n 
1



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

UNIVERSAL TRANSACTIONAL 
MEMORY CONSTRUCTION

• Universal construction transforms program from one valid 
state to another valid state

• Use TM to isolate modifications until commit

• Schedule transactions on threads for wait-free progress

7



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

STATES

8

Memory
...

...

0 0
1 0
2 0
3 0
4 0

ctkey

S0
chunks

0 1
1 0
2 0
3 1
4 0

S1

0 1
1 2
2 2
3 1
4 0

S2

0 3
1 2
2 2
3 3
4 3

S3

current

NULL

State History



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

TRANSACTION SCHEDULING 
ONTO THREADS

• A thread‘s commit time is FAI(CT)

• SCT = ftx(SCT-1)

• CT-1 = i * k + l

• Log l = (CT-1) mod k

• Invocation i = (CT-1) div k

9

Log kLog 1

In
vo

ca
tio

n 
0

txBegin
txRead
txWrite
txCommit

S1

txBegin
txRead
txWrite
txCommit

Sk

txBegin
txRead
txWrite
txCommit

Sk+1

txBegin
txRead
txWrite
txCommit

S2k

In
vo

ca
tio

n 
1

...



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

TRANSACTION SCHEDULING 
ONTO THREADS

• ct4 = FAI(CT4)

• S4 = ftx(S3)

• ct4-1 = i * k + l

• Log l1 = 3 mod 2

• Invocation i1 = 3 div 2

10

Log 1Log 0

In
vo

ca
tio

n 
0

txBegin
txRead
txWrite
txCommit

S1

txBegin
txRead
txWrite
txCommit

S2

txBegin
txRead
txWrite
txCommit

S3

txBegin
txRead
txWrite
txCommit

S4

In
vo

ca
tio

n 
1



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

txBegin(ct)

• Clone current head of state history

• Chunks are contained only by 
reference

• Set new commit time

• Keep base version

11

0 1
1 2
2 2
3 1
4 0

S2

current

NULL

0 1
1 2
2 2
3 1
4 0

S4
B2

ctkey



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

txWrite(addr, val)

• Identify chunk using hash function

• Clone chunk if still reference

• Update clone with value

12

0 1
1 2
2 2
3 1
4 0

S2

current

NULL

0 1
1 4
2 2
3 1
4 0

S4
B2

ctkey



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

txRead(addr)

• Identify chunk using hash function

• Keep commit time of chunk in read-
set if written by predecessor

• Return value of address

13

0 1
1 2
2 2
3 1
4 0

S2

current

NULL

0 1
1 4
2 2
3 1
4 0

S4
B2

ctkey



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

txCommit

•Wait until SCT-1 is available

• Validate against SCT-1 that read-
set versions unchanged

• Failure: abort and retry

• Success: update chunk 
references and append state 
to history using CAS

14

0 1
1 2
2 2
3 1
4 0

S2

0 3
1 2
2 2
3 3
4 3

S3

current

0 1
1 4
2 2
3 1
4 0

S4
B2

ctkey



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

txCommitProceeding(ct)

•Wait until SCT-1 is available

• Clone SCT-1 and append as SCT 
using CAS

15

ctkey

0 1
1 2
2 2
3 1
4 0

S2

0 3
1 2
2 2
3 3
4 3

S3

current

0 3
1 2
2 2
3 3
4 3

S4



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

UNIVERSAL CONSTRUCTION 
FOR THE GOOD CASE

16

Thread 2 Thread 3 Thread 4

Operating System

Thread 1

Log 1Log 0 Log 2

CT8

s1=ftx(S0) s3=ftx(S2)s2=ftx(S1)

ct4 ct5 ct6 ct7

s4=ftx(S3) s5=ftx(S4) s6=ftx(S5)

NULL

Invocation 0

Invocation 1

Invocation 2

S3

Global State

next CT

NULL NULL



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

DEALING WITH THREAD 
CRASHES

• Thread crashes not detectable in 
AMSM: need helping

•Waiting in txCommit for SCT-1 used 
for helping 

• Process SCT-1 = ftx(SCT-2)

• Progress as long as one thread survives

17

Log 1Log 0

txBegin
txRead
txWrite
txCommit

S3

txBegin
txRead
txWrite
txCommit

S4

In
vo

ca
tio

n 
1

Thread 2Thread 1

ct3 ct4

S2

current

NULL S4



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

DEALING WITH 
TRANSACTION CRASHES

• Transaction crashes detectable in 
AMSM: throw exception

• Considered as persistent failures

• Commit proceeding state

•No further invocations can be added 
to the log

18

Log 1Log 0

txBegin
txRead
txWrite
txCommit

S3

txBegin
txRead
txWrite
txCommit

S4

In
vo

ca
tio

n 
1

S2

current

S3=S2 NULL

S5=S4
Empty

NULL

In
vo

ca
tio

n 
2



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

TOLERATING NON-
TERMINATING TRANSACTIONS

• Non-terminating transaction: ftx(SCT-1) never returns

• Use performance counter to assign quota of steps 
for invocation

• When exceeded commit proceeding and retry 
with larger quota

• Quota is unknown and usually large

• Bounded number of states (bound memory) 
means bound number of steps for transaction to 
complete

19

Log 1Log 0

txBegin
txRead
txWrite
txCommit

S3

txBegin
txRead
txWrite
txCommit

S4

In
vo

ca
tio

n 
1

S2

current

S3=S2 NULL

NULL

In
vo

ca
tio

n 
2

txBegin
txRead
txWrite
txCommit

S5

t=12

t=13

t=23



The Universal Transactional Memory Construction TRANSACT‘11, San Jose, CA

CONCLUSION

•Wait-free progress under AMSM by:

•Decoupling of work from threads for helping

• Isolating changes in transactions to mask failures

20


