THE UNIVERSAL
TRANSACTIONAL MEMORY
CONSTRUCTION

Jons-Tobias Wamhoff and Christof Fetzer
Dresden University of Technology, Germany



MOTIVATION

« Universal construction

- Shows how to convert sequential algorithm into concurrent
walt-free algorithm

« Can one base such a construction on T™M!?
* Walrt-free progress for all correct operations

- lolerate crashes and non-terminating operations

The Universal Transactional Memory Construction 2 TRANSACT| |, San Jose, CA



ASYNCHRONOUS MULTICORE
SYSTEM MODEL (AMSM)

| Shared Memory | » Asynchronous model with features of

current multi-core systems

Traﬁsactional Men.wry
* Performance counters for executed

cycles per thread

Code Code » Size of memory is bound

» Operations (transactions) can be

Perf Citr 1 Perf Ctr n
executed by any thread

Thread 1 Thread n

A A » Compare-and-Swap (CAS),

0, ing S
|_Operating System _| Fetch-and-Increment (FAI)

The Universal Transactional Memory Construction 3 TRANSACT| |, San Jose, CA




AMSM CRASH FAILURES

‘ Shared Memory \

| Transactional Memory |  Threads can crash (stop taking steps)
caused by:

Code Z » Operating system, hardware, signal:
not detectable in AMSM

Perf Ctr 1 Perf Ctr n
W I — . Program code (bug): deﬁected by
A A runtime and converted In exception
‘ Operating System \

The Universal Transactional Memory Construction 4 TRANSACT| |, San Jose, CA




The Universal Transactional Memory Construction

Log defines total order on a sequence of
invocations (operations)

 FIFO sequential execution
Multiple logs executed in parallel

Invocations (transactions) applied to shared

memory

* Sequential object to transform into wait-free
linerizable object

Transactions can be non-terminating

* Terminate correct transactions within finite
number of steps

Invocation 0

Invocation 1

AMSM PROGRAMS

Log 0

D

~

( .
txBegin

txRead
txWrite

txCommit

~N

N

%%

v

S

~

(, .
txBegilin

txRead
txWrite

N

txCommit

~N

Log 1

(2

~

(, .
txBegin

txRead
txWrite

N

v

txCommit

~N

N

%

~

( .
txBegilin

txRead
txWrite

N

txCommit

~N

%

v

TRANSACT'I I, San Jose, CA



INVOCATION PROCESSING

‘ Shared Memory \

‘ Transactional Memory \

Code Code
Perf Ctr 1 Perf Ctr n
s
Thread 1 Thread n

*

*

‘ Operating System \

OW Can one

process Invocations
from K logs using n
threads In a finite
number of steps!

The Universal Transactional Memory Construction 6

Invocation 0

Invocation 1

Log 0

D

~

(, .
txBegin

txRead
txWrite

N

txCommit

\

%%

v

S

~

(, .
txBegilin

txRead
txWrite

N

txCommit

\

Log 1

(2

~

(, .
txBegin

txRead
txWrite

N

v

txCommit

~N

txBegin
txRead
txWrite

N

txCommit

%

v

TRANSACT'I I, San Jose, CA



UNIVERSAL TRANSACTIONAL
MEMORY CONSTRUCTION

» Universal construction transforms program from one valid
state to another valid state

» Use TM to isolate modifications until commit

* Schedule transactions on threads for walt-free progress

The Universal Transactional Memory Construction 7 TRANSACT| |, San Jose, CA



STATES

Memory State History cur*rent
|
> Sq > So > NULL
chunks
0 O|1l | «<—t@ |0 |1 O3
1|0 ¢—T@ |10 1 (2 [ &—@| 1|2
210 [« o |2 |0 2|2 [« @ |2 |2
310 3|1 [ ¢&—@ |3 |1 3|3
410 ! 410 0410 . 413

key ct

The Universal Transactional Memory Construction 8 TRANSACT| |, San Jose, CA



TRANSACTION SCHEDULING
ONTO THREADS

» A thread's commit time i1s FAI(CT)
* Sc7 = fu(Scr)
Cl-l =1i*k+1

* Llog 1 = (CI-1) mod k

* Invocation 1 = (CJ-1) div Kk

The Universal Transactional Memory Construction 9

Invocation 0

Invocation 1

Log 1

\

4 )
txBegin

txRead
txWrite
txCommit

\

N %

"

4 )
txBegin
txRead
txWrite

Log k

4 )
txBegin

txRead
txWrite
txCommit

txCommit
\ Y,

v

N %

v
.

4 )
txBegin
txRead
txWrite

txCommit

N %

v

TRANSACT'I I, San Jose, CA



TRANSACTION SCHEDULING
ONTO THREADS

* cts = FAI(CTy)
* 54 = £x(53)
e Clg) = 1% k+ 1
* Llog 11 = 3 mod /

 Invocation 11 = 3 div /

The Universal Transactional Memory Construction

Invocation 0

Invocation 1

Log 0

D

~

( .
txBegin

txRead
txWrite

N

txCommit

\

%%

v

S

~

(, .
txBegilin

txRead
txWrite

N

txCommit

\

Log 1

(2

~

(, .
txBegin

txRead
txWrite

N

v

N

txCommit

~N

%

~

( .
txBegilin

txRead
txWrite

N

txCommit

~N

%

v

TRANSACT'I I, San Jose, CA



I
"

cxBegln (ct

current

» Clone current head of state history . S4
NULL B,,
» Chunks are contained only by
1 1
reference “ O ® 19
1|2 le—Tto[1]2
o 2[2]le—o[2]2
* Set new commit time <le 3] o 31
<«fe 4]0 o [4]0
Keep base version } 3
key ct

The Universal Transactional Memory Construction | | TRANSACT'I'|, San Jose, CA



txWrite (addr, wval)

current

82 NULL
* [dentify chunk using hash function

<o |01 01
* Clone chunk if still reference 1]2 1[4
22 |le—e[2]2
» Update clone with value «® |3 |1 ® (3|1
<40 |40 €14 (0

$ 4

key ct

The Universal Transactional Memory Construction 12 TRANSACT'I'|, San Jose, CA



txRead (addr)

current

v S,

» |dentify chunk using hash function NULL 52

» Keep commit time of chunk in read- <*12 (1) ; i? l
set It written by predecessor I2 > o213
e EIE NEE
« Return value of address <el2]0 el2l0
4
key ct

The Universal Transactional Memory Construction 13 TRANSACT| |, San Jose, CA



txCommai-

(]

« Wait until Scr.1 1s available current
¥ Sy

- Validate against Scr-1 that read- i

set versions unchanged

<0 (0|1 013 0|1

. 1[2]elo|1]2 14
Failure: abort and retry I AP e !?.
< e |31 3|3 3|1

* Success: update chunk <o 210 213 210
references and append state } 4
key ct

to history using CAS

The Universal Transactional Memory Construction |4 TRANSACT| |, San Jose, CA



I
v

txCommai-

(]

Proceedlng (ct

current

« Wait until Sc.1 1s avallable ! ! !

<0 |0 |1 0|3|«{ |03

* Clone Scr-1 and append as Scr ljejeye|T]e—re|T]°
. CAS 2|2 |€T@([2 |2 @ |2 |2
Using <+e 3|1 3|3 |« 3|3
<10 |40 4 |3 [« 4 (3

$ 4

key ct

The Universal Transactional Memory Construction 15 TRANSACT'I'|, San Jose, CA



UNIVERSAL CONSTRUCTION
FOR THE GOOD CASE

Log 0 Log 1 Log 2 Global State
Invocation 0 (s1 =ftX<SO>] (s2=ftx<s1 )] (s3=ftx(sg)j
Y Y Y
Invocation 1 (s4=ftx<83>] (s5=ftx<s4)] (s6=ftx<85)]

/¥ /Y R
Invocation 2 ( NULL ] ( NULL ] ( NULL ]
/ \\7L~\\ /
/ / ~<_ /

next CT
CT8

/ / T~a

4
/ / /I =~

/ / ! T~

ct ct ct
4 I I o I I 6 I I
Thread 1 Thread 2 Thread 3 Thread 4

: : : :
| Operating System |

The Universal Transactional Memory Construction 16 TRANSACT'I'|, San Jose, CA

~ <t




DEALING WITH THREAD

CRASHES

* [ hread crashes not detectable in
AMSM: need helping

Invocation 1

» Waiting in txCommit for Scr-) used
for helping

» Process Scr1 = £ix(Scr2)

* Progress as long as one thread survives

The Universal Transactional Memory Construction 17

current

V

Log 0 Log 1
f::) i\qﬁi!l
txBegin txBegin
txRead txRead
txWrite txWrite
txCommit txCommit
\ N\ >
I \
v R
[ M
t ot
C C
3 I I 4 I
Thread 1 Thread 2

TRANSACT'I I, San Jose, CA



DEALING WITH
TRANSACTION CRASHES

Log 0 Log 1
(7 )
* [ransaction crashes detectable In . <
: ' 2 txBegin
AMSM: throw exception 3 o meoy
S txWrite
, , , £ txCommit
- Considered as persistent failures \ 7 //
N
| | 5 NULL
- Commit proceeding state 3
» No further invocations can be added e

o el

The Universal Transactional Memory Construction 18 TRANSACT| |, San Jose, CA



TOLERATING NON-
TERMINATING TRANSAC TIONS

» Non-terminating transaction: fi(5cr-1) never returns

» Use performance counter to assign quota of steps
for invocation

* When exceeded commit proceeding and retry
with larger quota

» Quota Is unknown and usually large

* Bounded number of states (bound memory)
means bound number of steps for transaction to
complete

The Universal Transactional Memory Construction 19

Invocation 1

Invocation 2

Log 0 Log 1

(7 N\ (7 7
4 NI )
txBegin txBegin
txRead txRead
txWrite txWrite
txCommit txCommit
\ )\ Y,
(Bo)=ra]) NULL

4 N

txBegin

txRead

txWrite

txCommit
\ Y,

current

v

TRANSACT'I I, San Jose, CA



CONCLUSION

* Walrt-free progress under AMSM by:
* Decoupling of work from threads for helping

* |solating changes In transactions to mask failures

The Universal Transactional Memory Construction 20 TRANSACT| |, San Jose, CA



