
R: A Dynamic Language for Statistical Computing

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

September 3, 2010

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 1 / 11



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman at
University of Auckland, New Zealand.

Now developed and maintained by a distributed group of 19 people.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Most extension packages are available through CRAN or similar
repositories.

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 2 / 11



The R Language

R is a dynamic language.

Lazy evaluation is used for function arguments.

everything is a function, including flow control
sometimes used to capture argument expressions and evaluate in
non-standard ways

Managing data is an important part of the language.

Typical usage is initially interactive

read some data into variables
make some plots
compute some summaries
more sophisticated modeling steps
develop simple functions to replicate analysis
...

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 3 / 11



The R Language (cont.)

R is a vector/array language

similar in some ways to MATLAB, APL
if x is a vector of data then

(x - mean(x)) / sd(x)

produces a standardized version.

Explicit looping is often unnecessary.

Writing loops can be necessary/convenient at times.

The current interpreter is rather slow, making explicit loops using
scalar-sized values slower than in should be.

R packages can include code written in C or FORTRAN

to improve performance
to allow use of existing code implementations

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 4 / 11



Parallel Computing in R

R is single-threaded.

Two approaches have been used to add parallel computation:

explicit parallel computing by creating separate communicating R
processes (e.g. snow, Rmpi)
implicit approaches, including

using a multi-threaded BLAS
parallelizing vectorized operations and matrix/array operations using
OpenMPI (e.g. pnmath)

There is also work on using GPU-based parallel computing within R
packages.

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 5 / 11



Some Directions for the R Engine

Some directions I hope to work on in the next 12 to 18 months:

Adding parallelized versions of for vectorized operations and simple
matrix operations to the core distribution.

Byte code compilation of R code.

Increasing the limit on the size of vector data objects.

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 6 / 11



Parallelizing Vector and Matrix Operations

Conceptually, vectorized math functions are easy to parallelize.

Parallelizing loops for short vectors will often slow the code down.

Break-even points vary with hardware/operating system.

A strategy for determining and using break-even points is needed.

A preliminary implementation is available as the pnmath package.

Basic issues carry over to simple matrix operations, like colSums, and
operations producing matrix results from vectors, like dist.

Being able to easily turn off parallel computation may be important
to avoid contention in explicit parallelization contexts.

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 7 / 11



Byte Code Compilation

The current R implementation

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Compiling to byte code for a suitable virtual machine should

improve performance
help enable further improvements

Efforts to add byte code compilation to R have been underway for
some time.

Current R implementations include a byte code interpreter, and a
preliminary compiler is available from my web page.

The current compiler and virtual machine produce good
improvements in a number of cases.

However, better results should be possible with a new virtual machine
design.

This redesign is currently in progress.

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 8 / 11



Byte Code Compilation (cont.)

The new virtual machine will support

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Other directions to explore include

opcode fusing for parallelization
declarations (sealing, scalars, types, strictness)
advice to programmer on possible inefficiencies
machine code generation using LLVM or other toolkits
replacing the interpreter entirely

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 9 / 11



Byte Code Compilation (cont.)

A simple, artificial, example:

p1 <- function(x) {
for (i in seq_along(x))

x[i] <- x[i] + 1
x

}

In R this is essentially equivalent to x + 1.

Some timings for x <- rep(1, 1e7) on an x86_64 Ubuntu laptop:

Method Time Speedup

Interpreted 32.730 1.0
Byte compiled 9.530 3.4
Experimental 1.128 29.0
x+1 0.119 275.0

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 10 / 11



Increasing the Limit on the Size of Vector Objects

Currently The total number of elements in a vector cannot exceed
231 − 1 = 2, 147, 483, 647

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

Can this limit be raised without

breaking too many existing packages
requiring the rewriting of too much C code?
breaking compatibility with external software, such as BLAS
breaking ability to handle saved work spaces across platforms

Possible directions:

changing the integer data type
adding a long integer data type
allowing floating point numbers to be used for length and index
calculations.

Luke Tierney (U. of Iowa) Statistical Computing September 3, 2010 11 / 11


	Introduction
	The R Language
	Parallel Computing in R

	Some Directions for the R Engine
	Parallelizing Vector and Matrix Operations
	Byte Code Compilation
	Increasing the Limit on the Size of Vector Objects


