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Modern Software and Systems  
•  Hardware/architecture evolution 

  Low cost, high performance, memory-rich, multicore, 
virtualization support 

•  Distributed cluster computing 
  Web services, parallel/concurrent tasks, cloud computing 

•  Software as components, modules, tiers 
  Executed within own runtime (execution engine) 
  Reuse, mobility, process-level fault tolerance, isolation 
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Modern Software and Systems  
•  Hardware/architecture evolution 
•  Distributed cluster computing 

•  Software as components, modules, tiers 
  Executed within own runtime (execution engine) 
  Reuse, mobility, process-level fault tolerance, isolation 
  Web 2.0, web services, cloud systems 

 Presentation layer: Javascript, Ruby, Java, Python 
 Server-side logic: PHP, Perl, Java, Python, Ruby 
 Computations: MapReduce streaming (multi-language) 
 Database, key-value store: C++, Java, + query languages 

  Others (HPC): Python, Ruby, R  with C, C++ 
  Frameworks, IDES facilitate development and deployment 

1+ multi-core system 
component co-location or distribution 



Why One Language is Not Enough 
•  Programmer preference, expertise 
•  Amenability to addressing the particular problem that the 

component is designed to solve 
•  Library and framework support 
•  Speed of development 

  Fast prototyping, software understanding 
  Easy and transparent dynamic updates 
  Implementation, testing, debugging 
  SWE practice (agility, pairs) 

•  Performance 
•  Portability  

  Availability of language runtimes (interpreters) 

   Choosing one means accepting limitations for 1+ metrics 



Why One Language is Not Enough 
•  No one actually writes much code anymore… 

  Large numbers of programmers make their code available via 
the web (freely available and licensed open source) 
 Written in the language chosen by the author(s) 

•  Open source has experienced a surge in popularity, support, 
and participation 
  Participation by vast numbers of developers and users 

 Ideas for features, feedback, bug fixes 
 Short feedback/release loop 
 Online resources (FAQs, forums) save provide searchable support 
 Potential for viral, wide-spread use, free advertising 

•  Free software (open APIs) 
  Mashups 

•    Available packages 



Cross-language Interoperability 
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, … 

  Mixed-environment debugging 

•  Cross-language/process communications technology 
  RPC, messaging 

 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA 
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI 

  Data exchange formats 
 Protocol Buffers, XML, JSON 
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 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA 
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI 

  Data exchange formats 
 Protocol Buffers, XML, JSON 

  Exploit co-location of runtimes and virtual machines (system-
level, guest VMs) 
 CoLoRS – Co-Located Runtime Sharing (OOPSLA’10) 

  Direct, type-safe object sharing across language runtimes 
  Transparent / automatic replacement of high overhead RPC and 

messaging protocols 



Java 
process 

Python 
process 

Private Heap Private Heap 

co-located on a 
multi-core system 

CoLoRS server process 

Shared Classes 

Shared Heap 

Java 
threads 

Python 
threads 

CoLoRS GC 
threads 

Private Classes Private Classes 

Co-located Runtime Sharing (CoLoRS) 



CoLoRS Contributions 
•  Object and memory model 

  Objects and classes shared between programs written in 
dynamic and static languages 

  Static-dynamic hybrid:  efficiency with flexibility of dynamic 
class modifications via versioning and type mapping 

•  Type system 
  Preserves language-specific type-safety w/o new type rules 

•  Shared-memory garbage collector 
  Parallel, concurrent, on-the-fly GC that guarantees termination 

 No system-wide pauses, non-moving 

•  Synchronization in shared-memory 
  Simple, fast, yet same semantics as monitor synchronization 

•  CoLoRS support for HotSpot, cPython, and C++ 
  Requires runtime modification, C++ source2source translation 



CoLoRS Benefits 
•  CoLoRS support for HotSpot, cPython, and C++ 

  2-5% overhead: virtualization of memory access, write barriers 
  For co-located runtime communication performance 

 Multiple orders of magnitude improvements in latency 
 And throughput: 

 Due to avoidance of data serialization 
 Not due simply to the use of shared memory surprisingly  

 Localhost communication is optimized in Linux (0-copy) 



Cross-language Interoperability 
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, … 

  Mixed-environment debugging 

•  Cross-language/process communications technology 
  RPC, messaging 

 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA 
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI 

  Data exchange formats 
 Protocol Buffers, XML, JSON 

  Exploiting co-location of runtimes and virtual machines 
(system-level, guest VMs) 
 CoLoRS – Transparent (or programmatic), type-safe sharing of 

objects across different language runtimes that are co-located on 
the same physical system 

 VSHMem – shared memory support for Xen 



Modern Apps and Software 
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, R 

  Modular, componentized, easily distributed 

•  Cross-language/process communications technology 
  Efficient RPC, messaging programmatically & when distributed 
  Transparent shared memory when co-located  

•  Requires distributed runtime support for  
  Efficient and scalable interoperation of components 

 Elasticity, load balancing, code/data/component scheduling, 
resource utilization, optimization, … 

  Our approach: Cloud computing 
 Remote/easy access to distributed and shared cluster resources 

  CPU/storage/network resources 

 Infrastructures, platforms, software “as-a-Service” 



3 types of cloud computing 
•  Infrastructure: Amazon Web Services (EC2, S3, EBS) 

  Virtualized, isolated (CPU, Network, Storage) systems on which 
users execute entire runtime stacks 
 Fully customer self-service 

  Open APIs (IaaS standard), scalable services 

•  Platform: Google App Engine, Microsoft Azure 
  Scalable program-level abstractions via well-defined interfaces 
  Enable construction of network-accessible applications 
  Process-level (sandbox) isolation, complete software stack 

•  Software: Salesforce.com 
  Applications provided to thin clients over a network 
  Customizable 

    



Cloud Computing 
•  Remote access to distributed and shared cluster resources 

  Has experienced a rapid uptake in the commercial sector 

 Public clouds – your software/apps on others’ systems 
 Users rent  a small fraction of vast resource pools 

  Advertised service-level-agreements (SLAs) 
  Resources are opaque and isolated 

 Offer high availability, fault tolerance, and extreme scale 

 Private clouds 
  Virtualized cluster management for local clusters 
  Support for elasticity (growing and shrinking of resource use) 
  Avoid vendor lock-in, facilitate test-drives -- features of public 

clouds are also useful in private setting 



Cloud Computing from UCSB 
•  Open source private cloud solutions 

  That implement the open APIs of popular public clouds 
 Eucalyptus – open source implementation of Amazon Web 

Services (AWS) over Xen, KVM, VMWare (Dr. Rich Wolski) 
 AppScale – open source implementation of Google App Engine 

for execution over Xen, KVM, Eucalyptus, AWS 

 Provide familiarity and easy transparent use 
  Engenders a large user community 

 Hybrid (public-private) cloud support 
 Leverage extant software offerings and multiple languages 
 Facilitate use of clouds technologies for more than just web 

services: HPC, data-intensive computing 



Open Source Cloud Computing from UCSB 
•  IaaS:  

  Open-source implementation of all AWS APIs 
  Robust, highly-available, scalable emulation 
  Cluster/data center support over Xen, KVM, VMWare 
  www.eucalyptus.com   Dr. Rich Wolski 

•  PaaS: 
  Open-source implementation of Google App Engine APIs 
  Pluggable (services), scalable, fault tolerant 
  Runs over virtualization or IaaS layer: AWS, Eucalyptus 
  appscale.cs.ucsb.edu 
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Summary 
•  Multi-language, multi-component software is here to stay 

  Dynamic and static languages must interoperate efficiently 
  Efficient technologies for cross-runtime communication 

 RPC, message-passing, object sharing via shared memory 

•  Distributed system support for easy deployment, scale 
  Cloud computing – remote access to cpu/storage/networking 
  Open source systems for private/hybrid cloud use 

 Bring benefits of cloud computing to local cluster resources 
 The same interfaces as public/proprietary clouds 

•  Together offer potential for new research and technological 
advance in high-performance and scientific computing 
  Use of dynamic languages in applications and systems 
  Profiling/monitoring, optimization, scaling, scheduling 



Thanks! 
•  Students and Visitors! 

  Chris Bunch, Jovan Chohan, Navraj Chohan, Nupur Garg, Matt 
Hubert, Jonathan Kupferman, Puneet Lakhina, Yiming Li, Nagy 
Mostafa, Yoshihide Nomura (Fujitsu), Raviprakash 
Ramanujam, Michal Weigel 

•  Support 
  Google, IBM Research, National Science Foundation 

   http://www.cs.ucsb.edu/~racelab 
   http://appscale.cs.ucsb.edu/ 



•  Extra slides on CoLoRS follow 



CoLoRS Object Model 
•  Every value is an object in CoLoRS (no primitive types) 
•  Space-efficient static-dynamic hybrid object model 

  Versioning and type mapping 
  Matching based on type name and field set 

 Shared classes are read only 

  Versions for same class name 
 Different memory layout 
 Different field sets 
 Allows for fields to be dynamically added/removed 
 Shared objects class pointer may point to different versions 

•  Type system 
  Preserves language-specific type-safety w/o new type rules 

 Illegal field access on private type is not violated by mapping 

  No data definition language 



CoLoRS 
Usage 
•  Requires runtime extensions 

  Identify VM object/class model 
and its relationships to CoLoRS  
 Object model and GC 

  Virtualize object accesses 
 Separate shared/private path 
 Field accesses, method calls, 

synchronization 
 Insert calls to CoLoRS API 

  Prohibit shared to private ptrs 

  Define a type mapping for 
builtins and user-defined types 

Shared Java Python 

integer byte,short,int, 
long, char, Byte, 
Short, Integer, 
Long, Character 

int 

float float, double, 
Float, Double 

float 

boolean boolean, Boolean bool 

string String str 

binary byte[] bytearray 

list List, ArrayList, 
Object[], int[], 
float[],T[], … 

list, tuple 

set Set, HashSet set, 
frozenset 

map Map, HashMap dict 



CoLoRS 
Usage (Continued…) 
•  Requires runtime extensions 

  Virtualization of library support 
for builtin types 
 For transparency of language-

specific interfaces 

  Add a CoLoRS GC thread and 
shared-root-dump support 

  Setup TCP/IP server socket and 
shmem attach/detach 

Shared Java Python 
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CoLoRS API 
•  Object copyToSharedMemory(Object root); 
•  Object allocate(Class objectClass); 
•  Object allocate(Class containerClass, int length); 
•  boolean isObjectShared(Object obj); 
•  ObjectRepository findOrCreateRepository(String key); 

  Repositories provide nonblocking get/set between VMs 
  Object reference exchange 

•  ObjectChannel findOrCreateChannel(String key); 
  Channels provide blocking send/receive between VMs 
  Object reference exchange 

•  Type getSharedType(Object obj); 
  For reflective inspection 



Garbage Collection 
•  Goal: exploit available CPUS and avoid system-wide pauses 
•  CoLoRS GC 

  Parallel: multiple GC threads 
  Concurrent: most work is interleaved with program threads 
  Non-moving: requirement since many languages assume that 

objects do not move 
 Mark-sweep style 

  Snap-shot at the beginning (SATB) 
  Thread-local allocation buffers (TLABs) 

•  Extant approaches cannot be used in CoLoRS 
  Require multiple system-wide handshakes 
  Mutators must check whether they need to respond to 

handshakes during execution 
  Thread-level (CoLoRS requires VM-level operation) 



Garbage Collection 
•  Goal: exploit available CPUS and avoid system-wide pauses 
•  CoLoRS GC 

  Parallel: multiple GC threads 
  Concurrent: most work is interleaved with program threads 
  Non-moving: requirement since many languages assume that 

objects do not move 
 Mark-sweep style 

  Snap-shot at the beginning (SATB) 
  Thread-local allocation buffers (TLABs) 
  Abstract private VM memory management to 1 operation 

 Shared root reporting (w/o any implementation requirements) 
 If this can be done without pausing the program 

  CoLoRS GC introduces zero pauses 



Experimental Methodology 
•  Implemented in  

  openjdk6: HotSpot (server compiler and interpreter) 
  cPython 

•  Benchmarks 
  Overhead (no use of shared memory when available) 

 Java: Dacapo, SpecJBB 
 Python: PyBench, programming language shootout suite 

  Performance evaluation: Case study for RPC, messaging 
 Response time and throughput (call or transaction rate) 
 CORBA, Thrift, Protocol Buffers, and REST 

  Vs the same protocols with CoLoRS support  

 End-to-end server-client performance for two real applications 
  Cassandra datastore 
  Hadoop Distributed File System (HDFS) 
  Colors provides a cache 



CoLoRS Performance for Popular RPC Systems 
•  For different data types (nodes:x is a binary tree depth x) 

  Performance gains due to serialization avoidance 



CoLoRS for Applications 

  Performance gains due to serialization avoidance 



CoLoRS Overhead 

Benchmark 
Execution 
Time (s) 

CoLoRS % 
Overhead 

binarytrees 6.79 3.39 
fannkuch 1.97 4.57 
mandelbrot 15.32 7.18 

meteorcontest 2.25 1.78 
nbody 8.67 2.08 
spectralnorm 14.31 5.73 
pybench 3.92 5.20 
pystone 4.09 5.87 
Geomean 5.56 4.05 

antlr 2.40 8.40 
bloat 6.34 6.30 
chart 6.19 6.10 
eclipse 24.54 4.70 
fop 2.11 7.70 
hsqldb 3.35 3.60 
jython 8.35 4.50 
luindex 7.50 9.00 
lusearch 4.25 1.40 
pmd 6.92 8.60 
xalan 5.97 0.00 
Geomean 5.63 1.62 

Throughput 
jbb'00 112726.00 5.30 
jbb'05 54066.00 1.30 
Geomean 78068.20 2.62 

Python 

Java 

•  Due to virtualization of 
  Libraries (builtins)  
  Object field access 
  Synchronization 
  Method dispatch 
  Allocation/GC 

•  Provision of 
transparency 

•  When no sharing 
occurs 


