
Multi-language Applications and
Systems

Chandra Krintz
Laboratory for Research on

Adaptive Compilation Environments (RACE)
Computer Science Dept.

Univ. of California, Santa Barbara

VEESC
September 3, 2010

Modern Software and Systems
•  Hardware/architecture evolution

  Low cost, high performance, memory-rich, multicore,
virtualization support

•  Distributed cluster computing
  Web services, parallel/concurrent tasks, cloud computing

•  Software as components, modules, tiers
  Executed within own runtime (execution engine)
  Reuse, mobility, process-level fault tolerance, isolation

Modern Software and Systems
•  Hardware/architecture evolution

  Low cost, high performance, memory-rich, multicore,
virtualization support

•  Distributed cluster computing
  Web services, parallel/concurrent tasks, cloud computing

•  Software as components, modules, tiers
  Executed within own runtime (execution engine)
  Reuse, mobility, process-level fault tolerance, isolation

Applet

J2SE

Applet
Container

EJB

Application
Container

Database
Engine

RMI
CORBA

XML
JNDI

JDBC HTTP
TCP/IP

SQL

Traditional Java Enterprise / Web 1.0

J2SE
J2EE J2EE

J2SE

JSP

Web
Container

Servlet

J2SE
J2EE

Modern Software and Systems
•  Hardware/architecture evolution

  Low cost, high performance, memory-rich, multicore,
virtualization support

•  Distributed cluster computing
  Web services, parallel/concurrent tasks, cloud computing

•  Software as components, modules, tiers
  Executed within own runtime (execution engine)
  Reuse, mobility, process-level fault tolerance, isolation

Applet

J2SE

Applet
Container

JSP

Web
Container

Servlet
EJB

Application
Container

Database
Engine

RMI
CORBA

XML
JNDI

JDBC HTTP
TCP/IP

SQL

J2SE
J2EE J2SE

J2EE J2EE
J2SE

1+ multi-core system
tier co-location or distribution

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing

•  Software as components, modules, tiers
  Executed within own runtime (execution engine)
  Reuse, mobility, process-level fault tolerance, isolation
  Web 2.0, web services, cloud systems

 Presentation layer: Javascript, Ruby, Java, Python
 Server-side logic: PHP, Perl, Java, Python, Ruby
 Computations: MapReduce streaming (multi-language)
 Database, key-value store: C++, Java, + query languages

  Others (HPC): Python, Ruby, R with C, C++
  Frameworks, IDES facilitate development and deployment

1+ multi-core system
component co-location or distribution

Why One Language is Not Enough
•  Programmer preference, expertise
•  Amenability to addressing the particular problem that the

component is designed to solve
•  Library and framework support
•  Speed of development

  Fast prototyping, software understanding
  Easy and transparent dynamic updates
  Implementation, testing, debugging
  SWE practice (agility, pairs)

•  Performance
•  Portability

  Availability of language runtimes (interpreters)

 Choosing one means accepting limitations for 1+ metrics

Why One Language is Not Enough
•  No one actually writes much code anymore…

  Large numbers of programmers make their code available via
the web (freely available and licensed open source)
 Written in the language chosen by the author(s)

•  Open source has experienced a surge in popularity, support,
and participation
  Participation by vast numbers of developers and users

 Ideas for features, feedback, bug fixes
 Short feedback/release loop
 Online resources (FAQs, forums) save provide searchable support
 Potential for viral, wide-spread use, free advertising

•  Free software (open APIs)
  Mashups

•  Available packages

Cross-language Interoperability
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, …

  Mixed-environment debugging

•  Cross-language/process communications technology
  RPC, messaging

 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI

  Data exchange formats
 Protocol Buffers, XML, JSON

Cross-language Interoperability
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, …

  Mixed-environment debugging

•  Cross-language/process communications technology
  RPC, messaging

 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI

  Data exchange formats
 Protocol Buffers, XML, JSON

  Exploit co-location of runtimes and virtual machines (system-
level, guest VMs)
 CoLoRS – Co-Located Runtime Sharing (OOPSLA’10)

  Direct, type-safe object sharing across language runtimes
  Transparent / automatic replacement of high overhead RPC and

messaging protocols

Java
process

Python
process

Private Heap Private Heap

co-located on a
multi-core system

CoLoRS server process

Shared Classes

Shared Heap

Java
threads

Python
threads

CoLoRS GC
threads

Private Classes Private Classes

Co-located Runtime Sharing (CoLoRS)

CoLoRS Contributions
•  Object and memory model

  Objects and classes shared between programs written in
dynamic and static languages

  Static-dynamic hybrid: efficiency with flexibility of dynamic
class modifications via versioning and type mapping

•  Type system
  Preserves language-specific type-safety w/o new type rules

•  Shared-memory garbage collector
  Parallel, concurrent, on-the-fly GC that guarantees termination

 No system-wide pauses, non-moving

•  Synchronization in shared-memory
  Simple, fast, yet same semantics as monitor synchronization

•  CoLoRS support for HotSpot, cPython, and C++
  Requires runtime modification, C++ source2source translation

CoLoRS Benefits
•  CoLoRS support for HotSpot, cPython, and C++

  2-5% overhead: virtualization of memory access, write barriers
  For co-located runtime communication performance

 Multiple orders of magnitude improvements in latency
 And throughput:

 Due to avoidance of data serialization
 Not due simply to the use of shared memory surprisingly

 Localhost communication is optimized in Linux (0-copy)

Cross-language Interoperability
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, …

  Mixed-environment debugging

•  Cross-language/process communications technology
  RPC, messaging

 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI

  Data exchange formats
 Protocol Buffers, XML, JSON

  Exploiting co-location of runtimes and virtual machines
(system-level, guest VMs)
 CoLoRS – Transparent (or programmatic), type-safe sharing of

objects across different language runtimes that are co-located on
the same physical system

 VSHMem – shared memory support for Xen

Modern Apps and Software
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, R

  Modular, componentized, easily distributed

•  Cross-language/process communications technology
  Efficient RPC, messaging programmatically & when distributed
  Transparent shared memory when co-located

•  Requires distributed runtime support for
  Efficient and scalable interoperation of components

 Elasticity, load balancing, code/data/component scheduling,
resource utilization, optimization, …

  Our approach: Cloud computing
 Remote/easy access to distributed and shared cluster resources

  CPU/storage/network resources

 Infrastructures, platforms, software “as-a-Service”

3 types of cloud computing
•  Infrastructure: Amazon Web Services (EC2, S3, EBS)

  Virtualized, isolated (CPU, Network, Storage) systems on which
users execute entire runtime stacks
 Fully customer self-service

  Open APIs (IaaS standard), scalable services

•  Platform: Google App Engine, Microsoft Azure
  Scalable program-level abstractions via well-defined interfaces
  Enable construction of network-accessible applications
  Process-level (sandbox) isolation, complete software stack

•  Software: Salesforce.com
  Applications provided to thin clients over a network
  Customizable

Cloud Computing
•  Remote access to distributed and shared cluster resources

  Has experienced a rapid uptake in the commercial sector

 Public clouds – your software/apps on others’ systems
 Users rent a small fraction of vast resource pools

  Advertised service-level-agreements (SLAs)
  Resources are opaque and isolated

 Offer high availability, fault tolerance, and extreme scale

 Private clouds
  Virtualized cluster management for local clusters
  Support for elasticity (growing and shrinking of resource use)
  Avoid vendor lock-in, facilitate test-drives -- features of public

clouds are also useful in private setting

Cloud Computing from UCSB
•  Open source private cloud solutions

  That implement the open APIs of popular public clouds
 Eucalyptus – open source implementation of Amazon Web

Services (AWS) over Xen, KVM, VMWare (Dr. Rich Wolski)
 AppScale – open source implementation of Google App Engine

for execution over Xen, KVM, Eucalyptus, AWS

 Provide familiarity and easy transparent use
  Engenders a large user community

 Hybrid (public-private) cloud support
 Leverage extant software offerings and multiple languages
 Facilitate use of clouds technologies for more than just web

services: HPC, data-intensive computing

Open Source Cloud Computing from UCSB
•  IaaS:

  Open-source implementation of all AWS APIs
  Robust, highly-available, scalable emulation
  Cluster/data center support over Xen, KVM, VMWare
  www.eucalyptus.com Dr. Rich Wolski

•  PaaS:
  Open-source implementation of Google App Engine APIs
  Pluggable (services), scalable, fault tolerant
  Runs over virtualization or IaaS layer: AWS, Eucalyptus
  appscale.cs.ucsb.edu

AppScale Cloud Platform

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Application
servers

(Java, Python)

Pluggable

Elastic – grow and
shrink with demand

Components run in
one or more clouds
(public and private)

AppScale Cloud Platform

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Application
servers

(Java, Python)

Pluggable

Elastic – grow and
shrink with demand

HBase, Hypertable,
MySQL, Cassandra,

Voldemort, MongoDB,
Scalaris, MemcacheDB,

others…

Call out to SimpleDB in
AWS and BigTable in
Google App Engine

Components run in
one or more clouds
(public and private)

AppScale Cloud Platform

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Application
servers

(Java, Python)

Pluggable

Elastic – grow and
shrink with demand

Hadoop, MPI, X10,
stochastic simulation

Possibilities: R, Rhipe,
Kull (physics libs), …

Components run in
one or more clouds
(public and private)

Summary
•  Multi-language, multi-component software is here to stay

  Dynamic and static languages must interoperate efficiently
  Efficient technologies for cross-runtime communication

 RPC, message-passing, object sharing via shared memory

•  Distributed system support for easy deployment, scale
  Cloud computing – remote access to cpu/storage/networking
  Open source systems for private/hybrid cloud use

 Bring benefits of cloud computing to local cluster resources
 The same interfaces as public/proprietary clouds

•  Together offer potential for new research and technological
advance in high-performance and scientific computing
  Use of dynamic languages in applications and systems
  Profiling/monitoring, optimization, scaling, scheduling

Thanks!
•  Students and Visitors!

  Chris Bunch, Jovan Chohan, Navraj Chohan, Nupur Garg, Matt
Hubert, Jonathan Kupferman, Puneet Lakhina, Yiming Li, Nagy
Mostafa, Yoshihide Nomura (Fujitsu), Raviprakash
Ramanujam, Michal Weigel

•  Support
  Google, IBM Research, National Science Foundation

 http://www.cs.ucsb.edu/~racelab
 http://appscale.cs.ucsb.edu/

•  Extra slides on CoLoRS follow

CoLoRS Object Model
•  Every value is an object in CoLoRS (no primitive types)
•  Space-efficient static-dynamic hybrid object model

  Versioning and type mapping
  Matching based on type name and field set

 Shared classes are read only

  Versions for same class name
 Different memory layout
 Different field sets
 Allows for fields to be dynamically added/removed
 Shared objects class pointer may point to different versions

•  Type system
  Preserves language-specific type-safety w/o new type rules

 Illegal field access on private type is not violated by mapping

  No data definition language

CoLoRS
Usage
•  Requires runtime extensions

  Identify VM object/class model
and its relationships to CoLoRS
 Object model and GC

  Virtualize object accesses
 Separate shared/private path
 Field accesses, method calls,

synchronization
 Insert calls to CoLoRS API

  Prohibit shared to private ptrs

  Define a type mapping for
builtins and user-defined types

Shared Java Python

integer byte,short,int,
long, char, Byte,
Short, Integer,
Long, Character

int

float float, double,
Float, Double

float

boolean boolean, Boolean bool

string String str

binary byte[] bytearray

list List, ArrayList,
Object[], int[],
float[],T[], …

list, tuple

set Set, HashSet set,
frozenset

map Map, HashMap dict

CoLoRS
Usage (Continued…)
•  Requires runtime extensions

  Virtualization of library support
for builtin types
 For transparency of language-

specific interfaces

  Add a CoLoRS GC thread and
shared-root-dump support

  Setup TCP/IP server socket and
shmem attach/detach

Shared Java Python

integer byte,short,int,
long, char, Byte,
Short, Integer,
Long, Character

int

float float, double,
Float, Double

float

boolean boolean, Boolean bool

string String str

binary byte[] bytearray

list List, ArrayList,
Object[], int[],
float[],T[], …

list, tuple

set Set, HashSet set,
frozenset

map Map, HashMap dict

CoLoRS API
•  Object copyToSharedMemory(Object root);
•  Object allocate(Class objectClass);
•  Object allocate(Class containerClass, int length);
•  boolean isObjectShared(Object obj);
•  ObjectRepository findOrCreateRepository(String key);

  Repositories provide nonblocking get/set between VMs
  Object reference exchange

•  ObjectChannel findOrCreateChannel(String key);
  Channels provide blocking send/receive between VMs
  Object reference exchange

•  Type getSharedType(Object obj);
  For reflective inspection

Garbage Collection
•  Goal: exploit available CPUS and avoid system-wide pauses
•  CoLoRS GC

  Parallel: multiple GC threads
  Concurrent: most work is interleaved with program threads
  Non-moving: requirement since many languages assume that

objects do not move
 Mark-sweep style

  Snap-shot at the beginning (SATB)
  Thread-local allocation buffers (TLABs)

•  Extant approaches cannot be used in CoLoRS
  Require multiple system-wide handshakes
  Mutators must check whether they need to respond to

handshakes during execution
  Thread-level (CoLoRS requires VM-level operation)

Garbage Collection
•  Goal: exploit available CPUS and avoid system-wide pauses
•  CoLoRS GC

  Parallel: multiple GC threads
  Concurrent: most work is interleaved with program threads
  Non-moving: requirement since many languages assume that

objects do not move
 Mark-sweep style

  Snap-shot at the beginning (SATB)
  Thread-local allocation buffers (TLABs)
  Abstract private VM memory management to 1 operation

 Shared root reporting (w/o any implementation requirements)
 If this can be done without pausing the program

  CoLoRS GC introduces zero pauses

Experimental Methodology
•  Implemented in

  openjdk6: HotSpot (server compiler and interpreter)
  cPython

•  Benchmarks
  Overhead (no use of shared memory when available)

 Java: Dacapo, SpecJBB
 Python: PyBench, programming language shootout suite

  Performance evaluation: Case study for RPC, messaging
 Response time and throughput (call or transaction rate)
 CORBA, Thrift, Protocol Buffers, and REST

  Vs the same protocols with CoLoRS support

 End-to-end server-client performance for two real applications
  Cassandra datastore
  Hadoop Distributed File System (HDFS)
  Colors provides a cache

CoLoRS Performance for Popular RPC Systems
•  For different data types (nodes:x is a binary tree depth x)

  Performance gains due to serialization avoidance

CoLoRS for Applications

  Performance gains due to serialization avoidance

CoLoRS Overhead

Benchmark
Execution
Time (s)

CoLoRS %
Overhead

binarytrees 6.79 3.39
fannkuch 1.97 4.57
mandelbrot 15.32 7.18

meteorcontest 2.25 1.78
nbody 8.67 2.08
spectralnorm 14.31 5.73
pybench 3.92 5.20
pystone 4.09 5.87
Geomean 5.56 4.05

antlr 2.40 8.40
bloat 6.34 6.30
chart 6.19 6.10
eclipse 24.54 4.70
fop 2.11 7.70
hsqldb 3.35 3.60
jython 8.35 4.50
luindex 7.50 9.00
lusearch 4.25 1.40
pmd 6.92 8.60
xalan 5.97 0.00
Geomean 5.63 1.62

Throughput
jbb'00 112726.00 5.30
jbb'05 54066.00 1.30
Geomean 78068.20 2.62

Python

Java

•  Due to virtualization of
  Libraries (builtins)
  Object field access
  Synchronization
  Method dispatch
  Allocation/GC

•  Provision of
transparency

•  When no sharing
occurs

