
Thorn: Robust Concurrent
Scripting

IBM Research

Bard Bloom
Jakob Dam

Julian Dolby
John Field

Emina Torlak

Purdue

Brian Burg
Peta Maj

Gregor Richards
Jan Vitek

Cambridge

Rok Strniša

Texas/Lugano

Nate Nystrom

Stockholm University

Johan Östlund
Tobias Wrigstad

VEESC 2010 © IBM 2010

Do these apps have anything
in common?

2

cloud-based web 2.0

embedded network
real-time data analysis

Yes

•  Collection of distributed, concurrent
components

•  Components are loosely coupled by
messages, persistent data

•  Irregular concurrency, driven by real-
world data (“reactive”)

•  High data volumes
•  Fault-tolerance important

3

Example: Twitter

4

search
indexer

web
gateway

page
handler

page
handler

page
handler

page
handler

user acct
DB

tweet
backup DB

memcache
partition

memcache
partition

memcache
partition

mobile
gateway

mobile
gateway

advertising
feed

•  each solid box
is a logical
process /
event handler

•  each dashed
line is a
message

 Thorn goals
An open source, agile, high performance language for

concurrent/distributed applications and reactive systems

Focus areas:
–  Concurrency: common concurrency model for local and

distributed computing
–  Code evolution: language, runtime, tool support for transition

from prototype scripts to robust apps
–  Efficient compilation: for a dynamic language on a JVM
–  Cloud-level optimizations: high-level optimizations in a

distributed environment
–  Security: end-to-end security in a distributed setting
–  Fault-tolerance: provide features that help programmers write

robust code in the presence of hardware/software faults

5

Features, present and absent
Features

•  isolated, concurrent,
communicating processes

•  lightweight objects
•  first-class functions
•  explicit state...
•  ...but many functional features
•  powerful aggregate datatypes
•  expressive pattern matching
•  dynamic typing
•  lightweight module system
•  Java interoperability; JVM impl.
•  gradual typing system

(experimental)

Non-features
•  changing fields/methods of

objects on the fly

•  introspection/reflection

•  serialization of mutable objects/
references or unknown classes

•  dynamic code loading

6

Status
•  Open source: http://www.thorn-lang.org
•  Interpreter for full language
•  JVM compiler for language core

–  performance comparable to Python (with limited
optimizations

–  currently being re-engineered
•  Initial experience

–  web apps, concurrent kernels, compiler, ...
–  in progress: revisions to syntax, etc. based on

experience
•  Prototype of (optional) type annotation

system
7

Trivial Thorn script

8

for (l <- argv()(0).file().contents().split("\n"))
 if (l.contains?(argv()(1))) println(l);

file i/o methods

no explicit decl needed for var

split string into list

iterate over elements of a list

access command-line args

usual library functions on lists

Concurrency in Thorn: a
MMORPG*

•  Adverbial ping-pong
•  Two players
•  Play by describing how you hit the ball
•  Distributed
•  Each player runs exactly the same code

*minimalist multiplayer online role-playing game
9

DEMO
MMORPG

10

MMORPG message flow
Player 1 Player 2

happily

eagerly

quickly

sluggishly

snickering

bouncing it off her head

11

Thorn app: birdseye view

12

Site A
component 1

component 2

component 3

component 4

Site B
component 5

component 6

component 7

component 8

Sites model physical
application distribution
•  one JVM per site
•  I/O and other resources

managed by sites
•  failures managed by sites

Components are Thorn
processes
•  components can spawn other

components (at the same site)
•  processes communicate by

message passing
•  intra- and inter-site messaging

works the same way

MMORPG Code

13

// MMORPG code for both players!

spawn {!

 var done := false;!

 body { !
 [name, otherURI] = argv();!
 otherSite = site(otherURI);!

 fun play(hit) {!
 advly = readln("Hit how?");!
 done := advly == "";!
 if (done) {!
 println("You lose!");!
 otherSite <<< null;!
 }!
 else {!
 otherSite <<< !
 "$name $`hit`s the ball $advly.";!
 }!
 }!

 start =!
 thisSite().str < otherSite.str;!

 if (start) play("serve");!

 do {!
 receive {!
 msg::string => {!
 println(msg);!
 play("return");!
 }!
 | null => {!
 println("You win!");!
 done := true;!
 }!
 }!
 } until (done);!
 }!

};!

spawn an isolated
component (process)

mutable
component-
scoped variable

function
decl

send a message
(any immutable
datum)

convert URI into
component ref

receive messages
matching pattern

pattern variable
(with type
constraint)

interpolate data
into string

constant pattern

immutable
component-
scoped variable

Thorn design philosophy
•  Steal good ideas from everywhere

–  (ok, we invented some too)
–  aiming for harmonious merge of features
–  strongest influences: Erlang, Python (but there are many others)

•  Assume concurrency is ubiquitous
–  this affects every aspect of the language design

•  Adopt best ideas from scripting world...
–  dynamic typing, powerful aggregates, ...

•  ...but seduce programmers to good software engineering
–  powerful constructs that provide immediate value
–  optional features for robustness
–  encourage use of functional features when appropriate
–  no reflective or self-modifying constructs

•  Syntax follows semantics
–  more consequential ops have heavier syntax

14

Why the trend toward
dynamic languages?

•  Programming is not the art of implementing a spec, it's the art of
refining a (usually informal) design

•  Want to defer non-critical decisions while exploring design
space

•  Test consequences of decisions by running some code
•  In the real world, design space typically explored bidirectionally

–  top-down refinement of code architecture, global invariants, shared
types

–  bottom-up testing of concrete cases

•  Bugs are ever-present, but should not manifest themselves so
early that they get in the way of refinement process

Forcing programmers to document design decisions too early can
inhibit productivity

15

Scripting + concurrency:
? …or… !

•  Scripts already handle concurrency (but not especially
well)

•  Dynamic typing allows code for distributed components to
evolve independently…code can bend without breaking

•  Rich collection of built-in datatypes allows components
with minimal advance knowledge of one another’s
information schemas to communicate readily

•  Powerful aggregate datatypes extremely handy for
managing component state

–  associative datatypes allow distinct components to
maintain differing “views” of same logical data

16

Thorn Robustness features

•  No reflection, eval, dynamic code loading (à la Java)
–  alternatives for most scenarios

•  Ubiquitous patterns
–  for documentation
–  to generate efficient code

•  Powerful aggregates
–  allow semantics-aware optimizations

•  Easy upgrade path from simple scripts to reusable code
–  e.g., simple records → encapsulated classes

•  Channel-style concurrency
–  to document protocols

•  Modules
–  easy to wrap scripts, hide names

•  Experimental gradual typing system
17

Patterns

18

alist = [[1, true], [15, null], ["yes", "no"]];!

fun lookup(k, [[$k, v], ..]) = +v;!
 | lookup(k, []) = null;!
 | lookup(k, [_, t..]) = lookup(k, t);!

if (lookup(15, alist) ~ +w) // found it!

match value of k! declare and bind
variable v!

ignore tail

“I found it, and
it’s v!”

“I didn’t find it”

“Did you find
something (call it
w)?”

Patterns are everywhere in thorn
•  subsume traditional types
•  provide useful information on intent to compiler
•  can be weakened/strengthened as needed

ignore head,
bind tail to t!

Exposing data: records

•  Immutable name-value bindings

•  Access via selectors

•  Access via pattern matching

–  partial match works
–  c alone abbreviates c:c

r = { a:1, b:2, c:[17, 18] }!

r.b == 2!

if (r ~ { a:1, c }) println(c);!

19

Encapsulating data: classes

•  class parameters (text, user, n) give:
–  instance variables of those names
–  constructor
–  pattern match
–  getters (and setters if mutable)
–  pure means "immutable" and "transmissible”

•  multiple inheritance

class Chirp(text, user, n) :pure {!
 def str = '($n) "$text" -- $user';!
 ...!
 }!

20

Records to objects
•  Prototype with records

•  Upgrade later to classes

•  And things still work
–  access via selectors

–  access via pattern matching

•  Plus, you get method calls

r = { a:1, b:2 }!

class Abc(a,b) { def aplusb() = a + b };!
 ...!
r = Abc(1, 2);!

r.b == 2!

if (r ~ { b }) println(b);!

r.aplusb() == 3! 21

Tables

•  Tables are high power maps/dictionaries
•  Each row of a table is a record
•  Always mutable: can add/delete rows
•  Adding a new column is easy; no need for objects or parallel

tables
•  Variants: ordered (extensible arrays), map-style
•  Wide selection of queries

chirps = table(num){chirp, var plus, var minus};!
 ...!
chirps(n) := { chirp:c, plus:p, minus:m }!

22

key field! value fields! var: conveniently
update one field “in
place”!

update row with key
n (other ops check if
row already exists)

Tables and queries

•  The problem: given m,k,n
–  roll n k-sided dice m times;
–  graph the results

th -f dice.th -- 30 2 6!

 2 *!
 3 !
 4 ***!
 5 ****!
 6 ******!
 7 ****!
 8 ******!
 9 ***!
10 **!
11 *!
12 ! 23

Dice code

[.int(nRolls), .int(nDice), .int(nSides)] = argv();!

fun roll() = [nSides.rand1 | for i <- 1..nDice].sum;!

stars = group(t: roll()){s: "*".. | for i <- 1..nRolls};!

for (i <- nDice.. nDice*nSides) {!
 println("%3d ".format(i)!
 + if (stars(i)~{s}) s.cat else "");!
}!

There's a lot going on here....
24

non-trivial
pattern!

list query!

explicit loop
over a range!

constructing
a table using
a query!

Potential relevance to
scientific community

•  Substrate for building scalable, domain-specific libraries
–  auto-scaling on cloud platforms
–  adaptive algorithms which require dynamic process creation
–  federated query on multiple data sources
–  take advantage of fault tolerance substrate (e.g., for generalizations of

Hadoop)
•  Orchestrating wide area computations

–  access to multiple remote data repositories
–  efficient serialization
–  near-real time data analysis of remote feeds
–  coordinating work of loosely coupled research groups

•  Security
–  provenance tracking
–  access control

•  Robustness
–  patterns, modules, tables/queries, ...

•  JVM substrate
–  access to Java libraries
–  portable 25

Real-time data analysis: not
that different from Twitter?

26

indexer

web
gateway

page
handler

page
handler

page
handler

page
handler

user
specific

data
archive DB

memcache
partition

memcache
partition

memcache
partition

data feed

data feed

Research challenges
•  Greater synergy between programming models and large scale

systems (data stores, streaming, messaging, caching systems)
–  languages can help to compose functionality more effectively

•  "Compiling in the large"
–  optimizing networking, data access, process placement, network caching
–  more critical to large system performance than optimizing registers, instructions

•  Managing failures
–  how much to expose to application programmers, how much to hide?
–  what are failures consequences when systems are _composed_?

•  Harnessing distributed compute and data resources
–  explicit control of resources vs. resource management by "Cloud OS"?

•  How to build high-level abstractions on lower-level distributed
systems?

•  Encapsulating existing systems, code without introducing fragility
•  What are the right types, annotations for large scale composition

and specialized domains?
27

Cloud optimization challenges

•  Simple data splitting:
–  split components whose communications access disjoint data

•  Replicate stateless components
–  can arbitrarily replication components where state not accessed across

multiple communications
•  Sharding

–  split components with table state into disjoint key spaces
•  Batch→Stream

–  replace sequence of bulk data transformations with parallel per-item
transformations

•  Generalized map-reduce
–  identify parallelizable queries, break into pipelines

•  Caching
–  introduce intermediate components that store the results of

computations

•  NB: These optimizations are much easier to do when the source
language understands processes and associative datatypes

More information

•  http://www.thorn-lang.org
– download interpreter
–  links to papers
– online demo

•  Additional collaborators welcome!

29

