
© 2010 IBM Corporation

Compilers are from Mars, Dynamic Scripting
Languages are from Venus

Peng Wu
IBM Research

September 3, 2010

© 2010 IBM Corporation2 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Compilation for Dynamic Scripting Languages
Trend in emerging programming paradigms

– Dynamic scripting languages (DSLs) are gaining
popularity, and start to be used for production
development

Commercial deployment
- Facebook (PHP)
- YouTube (Python)
- Invite Media (Python)
- Twitter (Ruby on Rails +

Scala)
- ManyEyes (Ruby on Rails)

Cloud
- Google AppEngine

(Python)

“Python helped us gain a huge lead in features and a majority of early market share
over our competition using C and Java.”

- Scott Becker, CTO of Invite Media Built on Django, Zenoss, Zope

“Python helped us gain a huge lead in features and a majority of early market share
over our competition using C and Java.”

- Scott Becker, CTO of Invite Media Built on Django, Zenoss, Zope

2.149%JavaScript10

2.370%Ruby9

3.474%Perl8

5.179%Python7

5.444%C#6

6.757%Basic5

8.554%C++4

10.298%PHP3

16.668%Java2

16.986%C1

ShareNameRank

TIOBE Language Index

© 2010 IBM Corporation3 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Motivation
Dynamic scripting languages (DSL)
– Python, Ruby, PHP, Javascript, Lua, R, and many others

Optimization of DSL programs is an active area of research
– renewed browser wars

• TraceMonkey (Mozilla), SPUR (MS), V8 (Google)
– cloud deployment

• AppEngine from Google

Significantly slower compared to equivalent in Java and C
– mostly interpreted, not highly optimized, richer semantics for basic operations

The research landscape for DSL compilation is vast
– no low-hanging fruits for compilation
– a lot of variability in results
– no agreed principles in the community

© 2010 IBM Corporation4 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Language Comparison (Shootout)

4

Benchmarks: shootout (http://shootout.alioth.debian.org/) measured on Nehalem
Languages: Java (JIT, steady-version); Python, Ruby, Javascript, Lua (Interpreter)
Standard DSL implementation (interpreted) can be 10~100 slower than Java (JIT)

fa
st

er

http://shootout.alioth.debian.org/

© 2010 IBM Corporation5 Compilers are from Mars, and Dynamic Scripting Languages are from Venus5

Python Language and Implementation

Python is an object-oriented, dynamically typed language
– also support exception, garbage collection, function continuation

LOAD_GLOBAL (name resolution)
– dictionary lookup

CALL_FUNCTION (invocation)
– frame object, argument list processing,

dispatch according to types of calls

BINARY_ADD (type generic operation)
– dispatch according to types, object creation

def foo(list):
return len(list)+1

0 LOAD_GLOBAL 0 (len)
3 LOAD_FAST 0 (list)
6 CALL_FUNCTION 1
9 LOAD_CONST 1 (1)
12 BINARY_ADD
13 RETURN_VALUE

foo.py

python bytecode

All three involve layers of runtime calls (via function pointers), reference counting,
and exception checking

© 2010 IBM Corporation6 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Optimizing Compiler Approaches

Traditional
optimizer

DSL semantics

Unladen Swallow

B
inary

Optimizer

Translation

Optimizer

il-gen

code-gen

Optimizer
Backend

LLVM
(C)

Legacy target language: C/C++

Traditional
optimizer

DSL semantics

Jython
Java

Optimizer

Translation

Optimizer

il-gen

code-gen

Optimizer
Backend

Java JIT

Legacy target language: Java

R
untim

e

Traditional
optimizer

DSL semantics

IronPython

C
IL

Optimizer

Translation

Optimizer

il-gen

code-gen

Optimizer
Backend

CLR JIT
(CIL)

Legacy target language: C#

R
untim

e

R
untim

e

Interp

Traditional
optimizer

DSL semantics

PyPy

R
Python

Optimizer

Translation

Optimizer

il-gen

code-gen

Optimizer
Backend

RPython JIT

RPython is closest to Python

R
untim

e

Interp

© 2010 IBM Corporation7 Compilers are from Mars, and Dynamic Scripting Languages are from Venus7

Python Implementations (Unladen-Swallow benchmarks)

sp
ee

du
p

sl
ow

do
w

n

© 2010 IBM Corporation8 Compilers are from Mars, and Dynamic Scripting Languages are from Venus8

Python Implementations (shootout benchmarks)

sp
ee

du
p

sl
ow

do
w

n

© 2010 IBM Corporation9 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

A System View of Optimizing DSL Compilers

Low
ering of IR

Machine semantics (ISA)

Traditional IR semantics
(static typing, etc)

DSL semantics
(dynamic typing, rich operators
and built-in types, etc)

Optimizing DSL compiler

DSL
interpreter
+ runtime

machine
binary

Optimizer

Translation
(IR-gen)

Optimizer

Translation
(IR-gen)

Translation
(code-gen)

OptimizerBackend IR
semantics
(register, instr, etc)

DSL program

© 2010 IBM Corporation10 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

An Optimization Example (LOAD_GLOBAL)

100 SETUP_LOOP;
LOAD_GLOBAL 1 (‘foo’);
CALL_FUNCTION;
…
JUMP_ABSOLUTE 100;

Translation time optimization (e.g., unladen-swallow): in-line caching with guards, 3%~9%
improvements on rietfield, django, 2to3 from unladen-Swallow benchmarks.

DSL data-flow optimizer (e.g., bytecode optimizer): hoist LOAD_GLOBAL out of the loop if
one can prove it invariant

Optimization inside runtime (e.g., jython): improve dictionary (hashtable) lookup by inlining,
code straightening, etc

23 python BC

252 java BC

148 nodes and 5 BBs in initial IR

6882 nodes and 769 BBs after inlining 178 sites

IR explosion

© 2010 IBM Corporation11 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Optimizing Compiler Approaches

Traditional
optimizer

DSL semantics

Unladen Swallow

B
inary

Optimizer

Translation

Optimizer

il-gen

code-gen

Optimizer
Backend

LLVM
(C)

Legacy target language: C/C++

Traditional
optimizer

DSL semantics

Jython
Java

Optimizer

Translation

Optimizer

il-gen

code-gen

Optimizer
Backend

Java JIT

Legacy target language: Java

R
untim

e

Traditional
optimizer

DSL semantics

IronPython

C
IL

Optimizer

Translation

Optimizer

il-gen

code-gen

Optimizer
Backend

CLR JIT
(CIL)

Legacy target language: C#

R
untim

e

R
untim

e

Interp

Traditional
optimizer

DSL semantics

PyPy

R
Python

Optimizer

Translation

Optimizer

il-gen

code-gen

Optimizer
Backend

RPython JIT

RPython is closest to Python

R
untim

e

Interp

© 2010 IBM Corporation12 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

First Level of Lowering of DSL Semantics

Less dynamism
Less overhead

ref counting;
PyBinaryAdd();
error checking;

LLVM

ref counting;
inlined PyIntAdd;
error checking;

invokevirtual
PyObject._add()

INT_ADD (unboxed)

LLVM

JVM

RPython

Unladen
(naïve)

Jython

Unladen
w/

feedback

PyPy

BINARY_ADD

Translation

Direct
opt effect

JVM IR

RPython IR

LLVM IR

Semantic
loss

Compact
IR

better

JVM IR

LLVM IR

RPython IR

impact effectiveness of
optimizer at next level

RPython: well-typed, unboxed primitive types, class definition unchange after start-up time

DSL Semantics

© 2010 IBM Corporation13 Compilers are from Mars, and Dynamic Scripting Languages are from Venus13

Dynamic Scripting Language JIT Landscape

Squirrel
Fish

V8

Trace
Monkey

Java
script

Unladen-
swallow

CLR/DLR
Python

Ruby

CLR/DLR
DaVinci
Machine

Client

PHP

Server

Client/Server

Client/Server

CLR/
DLR

DaVinci
Machine

JVM based
– Jython
– JRuby
– Rhino

CLR based
– IronPython
– IronRuby
– IronJscript
– SPUR

Add-on JIT
– Unladen
– Rubinius

Add-on trace JIT
– PyPy
– LuaJIT,
– TraceMonkey
– SPUR

Significant difference in JIT effectiveness across languages
– Javascript has the most effective JITs
– Ruby JITs are similar to Python’s

© 2010 IBM Corporation14 Compilers are from Mars, and Dynamic Scripting Languages are from Venus14

Concluding Remarks (Questions)

1. What are the right level(s) to optimize dynamic scripting languages?
2. How to introduce DSL semantics into an optimization infrastructure designed

for statically typed languages

– “Naïve” compilation of DSL provides little benefit
– Dynamism and overhead should be reduced at a suitable IR level

– Semantic lowering can be “lost-in-translation” or real “strength reduction”
– Exposing the runtime to optimizer can be double-edged sword: optimizing

implementation of the semantics instead of the semantics
– Language runtime needs to be redesigned to maximize optimizer’s capability

to “strength reduce”

The challenges

Our thoughts

Questions for the compiler community

Dynamically typed languages are slow. And we, the language design &
implementation community, does not quite know how to optimize DSLs.

© 2010 IBM Corporation15 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Performance of Javascript implementations

15

sp
ee

du
p

© 2010 IBM Corporation16 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Performance of Ruby Implementations

16

sp
ee

du
p

© 2010 IBM Corporation17 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

BACK UP

© 2010 IBM Corporation18 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Performance of LuaJIT

18

© 2010 IBM Corporation19 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

PyPy (Interpreters + JIT)

A Python implementation written in RPython
– interface with CPython modules may take a big performance hit

RPython is a restricted version of Python, e.g., (after start-up time)
– Well-typed according to type inference rules of RPython
– Class definitions do not change, support single inheritance
– Numerical and string types use unboxed representations
– Tuple, list, dictionary are homogeneous (across elements)

Tracing JIT through both user program and runtime (RPython)

Optimizations that work well
– Removal of frame handling
– Avoid creating temporary objects
– Optimize attribute and name lookups

© 2010 IBM Corporation20 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

IronPython: DynamicSites
Optimize method dispatch (including operators)
Incrementally create a cache of method stubs and guards in
response to VM queries
public static object Handle(object[],

FastDynamicSite<object, object, object> site1,
object obj1, object obj2) {

if (((obj1 != null) && (obj1.GetType() == typeof(int)))
&& ((obj2 != null) && (obj2.GetType() == typeof(int)))) {
return Int32Ops.Add(Converter.ConvertToInt32(obj1),

Converter.ConvertToInt32(obj3));
}
if (((obj1 != null) && (obj1.GetType() == typeof(string)))

&& ((obj2 != null) && (obj2.GetType() == typeof(string)))) {
return = StringOps.Add(Converter.ConvertToString(obj1),

Converter.ConvertToString(obj2));
}
return site1.UpdateBindingAndInvoke(obj1, obj3);

}

Propagate types when UpdateBindingAndInvoke recompiles stub

© 2010 IBM Corporation21 Compilers are from Mars, and Dynamic Scripting Languages are from Venus

Jython
Clean implementation of Python on top of JVM
– Generate JVM bytecodes from Python 2.5 programs

• interface with Java programs; cannot easily support standard C modules
– Runtime is rewritten in Java, allow JIT optimize user programs and runtime
– Python built-in objects are mapped to Java class hierarchy

• allow (virtual) function specialization based on built-in types

Large code explosion when applying standard JIT optimizations

Large memory footprint
– 300-600MB for small programs (~3MB on CPython)

New InvokeDynamic bytecode in Java7 specification, but still not
implemented in Jython

© 2010 IBM Corporation22 Compilers are from Mars, and Dynamic Scripting Languages are from Venus22

Unladen-swallow

Dealing with Dynamism
– Caching LOAD_GLOBAL and import
– Specialized binary and comparison operators, and builtin functions based on

runtime feedback
– Type inference for native types

Implementation Improvements
– Fast calls
– Constantish
– Expose Cpython stack to JIT (LLVM)
– Omit untaken branches (during IR generation)

	Compilers are from Mars, Dynamic Scripting Languages are from Venus���Peng Wu�IBM Research
	Compilation for Dynamic Scripting Languages
	Motivation
	Language Comparison (Shootout)
	Python Language and Implementation
	Optimizing Compiler Approaches
	Python Implementations (Unladen-Swallow benchmarks)
	Python Implementations (shootout benchmarks)
	A System View of Optimizing DSL Compilers
	An Optimization Example (LOAD_GLOBAL)
	Optimizing Compiler Approaches
	First Level of Lowering of DSL Semantics
	Dynamic Scripting Language JIT Landscape
	Concluding Remarks (Questions)
	Performance of Javascript implementations
	Performance of Ruby Implementations
	Slide Number 17
	Performance of LuaJIT
	PyPy (Interpreters + JIT)
	IronPython: DynamicSites
	Jython
	Unladen-swallow

