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Compilation for Dynamic Scripting Languages
Trend in emerging programming paradigms 

– Dynamic scripting languages (DSLs) are gaining 
popularity, and start to be used for production 
development

Commercial deployment
- Facebook (PHP)
- YouTube (Python)
- Invite Media (Python)
- Twitter (Ruby on Rails + 

Scala)
- ManyEyes (Ruby on Rails)

Cloud
- Google AppEngine 

(Python)

“Python helped us gain a huge lead in features and a majority of early market share 
over our competition using C and Java.” 

- Scott Becker, CTO of Invite Media Built on Django, Zenoss, Zope

“Python helped us gain a huge lead in features and a majority of early market share 
over our competition using C and Java.”

- Scott Becker, CTO of Invite Media Built on Django, Zenoss, Zope
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Motivation
Dynamic scripting languages (DSL)
– Python, Ruby, PHP, Javascript, Lua, R, and many others

Optimization of DSL programs is an active area of research
– renewed browser wars

• TraceMonkey (Mozilla), SPUR (MS), V8 (Google)
– cloud deployment

• AppEngine from Google

Significantly slower compared to equivalent in Java and C
– mostly interpreted, not highly optimized, richer semantics for basic operations

The research landscape for DSL compilation is vast
– no low-hanging fruits for compilation
– a lot of variability in results
– no agreed principles in the community
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Language Comparison (Shootout)

4

Benchmarks: shootout (http://shootout.alioth.debian.org/) measured on Nehalem
Languages: Java (JIT, steady-version); Python, Ruby, Javascript, Lua (Interpreter)
Standard DSL implementation (interpreted) can be 10~100 slower than Java (JIT)
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http://shootout.alioth.debian.org/
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Python Language and Implementation

Python is an object-oriented, dynamically typed language
– also support exception, garbage collection, function continuation

LOAD_GLOBAL (name resolution)
– dictionary lookup

CALL_FUNCTION (invocation)
– frame object, argument list processing, 

dispatch according to types of calls

BINARY_ADD (type generic operation)
– dispatch according to types, object creation

def foo(list):
return len(list)+1

0 LOAD_GLOBAL     0 (len)
3 LOAD_FAST       0 (list)
6 CALL_FUNCTION   1
9 LOAD_CONST      1 (1)
12 BINARY_ADD
13 RETURN_VALUE

foo.py

python bytecode

All three involve layers of runtime calls (via function pointers), reference counting, 
and exception checking
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Optimizing Compiler Approaches
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Python Implementations (Unladen-Swallow benchmarks)
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Python Implementations (shootout benchmarks)
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A System View of Optimizing DSL Compilers

Low
ering of IR

Machine semantics (ISA)
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An Optimization Example (LOAD_GLOBAL)

100 SETUP_LOOP; 
LOAD_GLOBAL 1 (‘foo’);
CALL_FUNCTION; 
…
JUMP_ABSOLUTE 100;

Translation time optimization (e.g., unladen-swallow): in-line caching with guards, 3%~9% 
improvements on rietfield, django, 2to3 from unladen-Swallow benchmarks.

DSL data-flow optimizer (e.g., bytecode optimizer): hoist LOAD_GLOBAL out of the loop if 
one can prove it invariant

Optimization inside runtime (e.g., jython): improve dictionary (hashtable) lookup by inlining, 
code straightening, etc

23 python BC

252 java BC

148 nodes and 5 BBs in initial IR

6882 nodes and 769 BBs after inlining 178 sites

IR explosion
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Optimizing Compiler Approaches
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First Level of Lowering of DSL Semantics

Less dynamism
Less overhead

ref counting;
PyBinaryAdd();
error checking;

LLVM
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Dynamic Scripting Language JIT Landscape
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Significant difference in JIT effectiveness across languages
– Javascript has the most effective JITs
– Ruby JITs are similar to Python’s
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Concluding Remarks (Questions)

1. What are the right level(s) to optimize dynamic scripting languages?
2. How to introduce DSL semantics into an optimization infrastructure designed 

for statically typed languages

– “Naïve” compilation of DSL provides little benefit
– Dynamism and overhead should be reduced at a suitable IR level

– Semantic lowering can be “lost-in-translation” or real “strength reduction”
– Exposing the runtime to optimizer can be double-edged sword: optimizing 

implementation of the semantics instead of the semantics
– Language runtime needs to be redesigned to maximize optimizer’s capability 

to “strength reduce”

The challenges

Our thoughts

Questions for the compiler community

Dynamically typed languages are slow. And we, the language design & 
implementation community, does not quite know how to optimize DSLs.
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Performance of Javascript implementations
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Performance of Ruby Implementations
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BACK UP
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Performance of LuaJIT

18
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PyPy (Interpreters + JIT)

A Python implementation written in RPython
– interface with CPython modules may take a big performance hit

RPython is a restricted version of Python, e.g., (after start-up time)
– Well-typed according to type inference rules of RPython
– Class definitions do not change, support single inheritance
– Numerical and string types use unboxed representations 
– Tuple, list, dictionary are homogeneous (across elements)

Tracing JIT through both user program and runtime (RPython)

Optimizations that work well
– Removal of frame handling
– Avoid creating temporary objects 
– Optimize attribute and name lookups
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IronPython: DynamicSites
Optimize method dispatch (including operators)
Incrementally create a cache of method stubs and guards in 
response to VM queries    
public static object Handle(object[],

FastDynamicSite<object, object, object> site1,
object obj1, object obj2) { 

if (((obj1 != null) && (obj1.GetType() == typeof(int))) 
&& ((obj2 != null) && (obj2.GetType() == typeof(int)))) { 
return Int32Ops.Add(Converter.ConvertToInt32(obj1), 

Converter.ConvertToInt32(obj3)); 
}
if (((obj1 != null) && (obj1.GetType() == typeof(string))) 

&& ((obj2 != null) && (obj2.GetType() == typeof(string)))) { 
return = StringOps.Add(Converter.ConvertToString(obj1),

Converter.ConvertToString(obj2)); 
} 
return site1.UpdateBindingAndInvoke(obj1, obj3); 

} 

Propagate types when UpdateBindingAndInvoke recompiles stub
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Jython
Clean implementation of Python on top of JVM
– Generate JVM bytecodes from Python 2.5 programs

• interface with Java programs; cannot easily support standard C modules
– Runtime is rewritten in Java, allow JIT optimize user programs and runtime
– Python built-in objects are mapped to Java class hierarchy

• allow (virtual) function specialization based on built-in types

Large code explosion when applying standard JIT optimizations

Large memory footprint
– 300-600MB for small programs (~3MB on CPython)

New InvokeDynamic bytecode in Java7 specification, but still not 
implemented in Jython
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Unladen-swallow

Dealing with Dynamism
– Caching LOAD_GLOBAL and import
– Specialized binary and comparison operators, and builtin functions based on 

runtime feedback
– Type inference for native types

Implementation Improvements 
– Fast calls 
– Constantish
– Expose Cpython stack to JIT (LLVM)
– Omit untaken branches (during IR generation)
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