We need a new, common Virtual
Execution Environment

Herman Venter
Research in Software Engineering Group
Microsoft Research, Redmond



Why a VEE?

* |.e. why not just compile language X directly to

a target chip architecture, perhaps using a
common compiler back-end infrastructure?

* VEE provides greater platform independence
by post-phoning the machine code generation.

 VEE factors out the TCB. No need to trust

compiler for language X or to require
compilation on client machine.



Why common?

VEE requires big investment: 100+ person
years

Expected lifetime must be 20+ years
Tool support

Libraries

Eco system



Why new?

* JVM has strong pro arguments
— Ubiquitous
— RVM
— 200+ languages
— J2EE, Eclipse, eco-system
* But
— Designed for one language
— Too complex, too much baggage

— Extensions take time to introduce, break so many things
and need so much effort to implement that in effect, one
produces a new VEE

— Not ubiquitous enough



New challenges

Vector machines
Many-core
NUMA

Grids and Clouds
Versioning and long lived data formats



Can we realistically expect to do better
with a new VEE?

* How does one design for multiple languages?

— JVM has more languages targeting it than the CLR, whose
designers consciously tried to accommodate multiple
languages

 Wouldn’t a multi language VEE necessarily be more
complex than the JVM?

e |f the JVM is not ubiquitous enough, why is a new VEE
any better?

— After all, it is not likely to be anywhere

* |f extending the JVM takes too long, why is it better to
create a new VEE?

— Surely, that will take even longer?



Some thoughts on how to do better

* Design the VEE to support dynamically typed
languages.

— Statically typed languages are just dynamically typed
languages where all the type checks can be discharged
by the compiler. That compiler may as well be the VEE
JIT.

* Use late-binding and polymorphic data containers
to avoid favoring a particular type system.

— For example, in the CLR a dynamically typed language
can use objects created by statically typed languages,
but the latter cannot use objects created by the
dynamically typed languages (except via Reflection).



No VEE can be ubiquitous, but

e Host new VEE on both JVM and CLR.

— On demand translation from new IL to JVM and CLR bytes codes might
be feasible.

— There will be a performance penalty, but perhaps not too much.

* Import JVM and CLR libraries by translating their byte codes
to the new IL.

— This means we that we don’t have to start over and don’t have to wait
for broad based deployment and adoption before getting to critical
mass.

— However, supporting all the various kinds Native callouts may be tricky
and labor intensive.
* Persuade the major web browsers to adopt the new VEE as
an alternative serialization format for JavaScript (and its
successors).



Basics

* Register based IL
— For a large number of virtual registers

* Highly regular instruction set

— Do not burden language front-ends with the
peculiarities of IL compression.

* First class tagged values

— Polymorphism must be supported by the
instruction set and be understood by the GC



Interpreter vs. JIT

* There is still disagreement on the desirability
of a VEE that generates machine code for all IL
code.

| am in the camp that wants to JIT everything.

* [t would be interesting, however, to try and
settle this question definitively, at least in the
context of a new VEE.



In-line caches

Crucial for high performance dynamic
languages.

Also very good for de-virtualizing virtual
method calls in OO languages.

Can also help with things such as transactional
memory.

Could be “free” if a tracing JIT is assumed.



Functions and closures

e Stack frames need to be accessible to
language runtimes.
— JavaScript runtimes need to be able to capture
references to live stack frames, dynamically add
locals to a stack frame, walk stacks and reflect

over stack frames. This is very costly to do if not
supported by the VEE.

* Tail-call recursion must be supported.
* Creating a VEE thread must be very cheap.



Vector instructions

* Not well supported on current generation of

VEEs.

 The next few years will probably see support
for vector instructions via libraries of intrinsic

methods/functions understood by the JIT.
* | would prefer to see dedicated IL instructions

pecause I'd like method calls to be dynamically
oound, which is not a good match for

Intrinsics.




Many-core

It is not clear that current dominant approaches

to garbage collection will scale across hundreds
of cores.

Applications will have to become more aware of
caches and the need to avoid invalidating cache
lines that are shared by many cores. The VEE and
its GC will have to provide ways for the
applications to control their cache impact.

New Thread libraries.
Control over scheduling of threads.
Message passing primitives (e.g. Barrelfish?)



Non uniform memory architectures

* |f the VEE provides the illusion that all of
memory is one big shared heap, then it is easy
to ignore the existence of NUMA, but difficult
to generate code that will exploit NUMA.

* Look into having multiple heaps. Perhaps
support linear types and read-only objects as a
means for enabling communication between
heaps while keeping them disjoint.



Grids and Clouds

* We need better tooling and libraries that work
well with grids and clouds.

* This creates an inflection point that makes
thoughts of a new VEE more attractive.



Versioning and long-lived data formats

* Preserving data without the accompanying
code makes little sense.

* Nor does preserving code without the
accompanying VEE.

* Preserving code in the form of a nominal type
system (e.g. as JVM class files) creates
versioning problems.



