
Combining Static and Dynamic
Typing in Ruby

Jeff Foster
University of Maryland, College Park

Joint work with Mike Furr, David An, Mike Hicks, Mark Daly, Avik
Chaudhuri, and Ben Kirzhner

Introduction

• Scripting languages are extremely popular

• Scripting languages are great for rapid development
■ Time from opening editor to successful run of the program is small

■ Rich libraries, flexible syntax, domain-specific support (e.g., regexps,
syscalls)

2

Lang Rating Lang Rating

1 Java 17.3% 7 *Python 4.3%

2 C 16.6% 8 *Perl 3.6%

3 *PHP 10% 9 Delphi 2.7%

4 C++ 9.5% 10 *JavaScript 2.6%

5 *Visual Basic 7.1% 11 *Ruby 2.4%

6 C# 5% 12 Objective-C 1.8%

*Scripting language TIOBE Index, January 2010 (based on search hits)

Dynamic Typing

• Most scripting languages have dynamic typing

■ def foo(x) y = x + 3; ... # no decls of x or y

• Benefits
■ Programs are shorter

■ No type errors unless program about to “go wrong”

■ Possible coding patterns very flexible (e.g., eval(“x+y”))

■ Seems good for rapid development

3

class A {
 public static void main(String[] args) {
 System.out.println(“Hello, world!”);
} }

puts “Hello, world!”

Java Ruby

Drawbacks

• Errors remain latent until run time

• No static types to serve as (rigorously checked)
documentation

• Code evolution and maintenance may be harder
■ E.g., no static type system to find bugs in refactorings

• Performance can be significantly lower without
sophisticated optimizations

4

Do these drawbacks matter?

• Getting an analysis correct is extremely important,
particular when used for discovery

• Several highly public gaffes in recent years
■ Chang and collaborators retracted 3 Science papers and

other articles due to errors in data analysis program (http://
www.sciencemag.org/cgi/content/summary/314/5807/1856)

■ Commonly used family of substitution matrices for database
searches and sequence alignments was found to be incorrect
15 years after its introduction, due to software
errors in the tool that produced the data (http://
www.nature.com/nbt/journal/v26/n3/full/nbt0308-274.html)

• Assurances that suggest a program is free of certain
classes of errors would be most welcome

5

Diamondback Ruby (DRuby)

• Research goal: Develop a type system for scripting langs.
■ Simple for programmers to use

■ Flexible enough to handle common idioms

■ Provides useful checking where desired

■ Reverts to run time checks where needed

• DRuby: Statically checked and inferred types for Ruby
■ Ruby becoming popular, especially for building web apps

■ A model scripting language

- Based on Smalltalk, and mostly makes sense internally

• RubyDust: DRuby types, but determined based on
executions, not program analysis

6

This Talk

• Types for Ruby
■ Type system is rich enough to handle many common idioms

■ Relevant to other languages, e.g., Python and Javascript

• Inferring Ruby types
■ Static analysis plus profiling for dynamic feature characterization

■ Dynamic analysis for a more holistic, easier-to-deploy system

• Evaluation on a range of Ruby programs

7

Types for Ruby

• How do we build a type system that characterizes
“reasonable” Ruby programs?
■ What idioms do Ruby programmers use?

■ Are Ruby programs even close to statically type safe?

• Goal: Keep the type system as simple as possible
■ Should be easy for programmer to understand

■ Should be predictable

8

Overview of the type system

• Standard stuff (think Java or C#): nominal types (i.e., class
names), function and tuple types, generics

• Less standard:
■ Intersection and union types

■ Optional and vararg types

■ Structural object types

■ Types for mixins

■ Self type

■ Flow-sensitivity for local variables

• We’ll illustrate our typing discipline on the core Ruby
standard library

9

The Ruby Standard Library

• Ruby comes with a bunch of useful classes
■ Fixnum (integers), String, Array, etc.

• However, these are implemented in C, not Ruby
■ Type inference for Ruby isn’t going to help!

• Our approach: type annotations
■ We will ultimately want these for regular code as well

• Standard annotation file base_types.rb
■ 185 classes, 17 modules, and 997 lines of type annotations

10

Basic Annotations

11

class String
 ##% "+" : (String) → String

 ##% insert : (Fixnum, String) → String

 ##% upto : (String) {String → Object} → String
 ...
end

Type annotation Block (higher-order
method) type

Intersection Types

• Meth is both Fixnum → Boolean and String → Boolean

■ Ex: “foo”.include?(“f”); “foo”.include?(42);

• Generally, if x has type A and B, then

■ x is both an A and a B, i.e., x is a subtype of A and of B

■ and thus x has both A’s methods and B’s methods

12

class String
 include? : Fixnum → Boolean
 include? : String → Boolean
end

Intersection Types (cont’d)

13

class String
 slice : (Fixnum) → Fixnum
 slice : (Range) → String
 slice : (Regexp) → String
 slice : (String) → String
 slice : (Fixnum, Fixnum) → String
 slice : (Regexp, Fixnum) → String
end

■ Intersection types are common in the standard library

■ 74 methods in base_types.rb use them
■ Our types look much like the RDoc descriptions of methods

■ Except we type check the uses of functions

■ We found several places where the RDoc types are wrong

■ (Note: We treat nil as having any type)

Optional Arguments

• Ex: “foo”.chomp(“o”); “foo”.chomp();
■ By default, chomps $/

• Abbreviation:

class String
 chomp : () → String
 chomp : (String) → String
end

class String
 chomp : (?String) → String
end

0 or 1 occurrence

14

Variable-length Arguments

• Ex: “foo”.delete(“a”); “foo”.delete(“a”, “b”, “c”);

• *arg is equivalent to an unbounded intersection

• To be sensible
■ Required arguments go first

■ Then optional arguments

■ Then one varargs argument

class String
 delete : (String, *String) → String
end

0 or more
occurrences

15

Union Types

• This method invocation is always safe
■ Note: in Java, would make interface I s.t. A < I, B < I

• Here x has type A or B
■ It’s either an A or a B, and we’re not sure which one

■ Therefore can only invoke x.m if m is common to both A and B

• Ex: Boolean short for TrueClass or FalseClass

16

class A def f() end end
class B def f() end end
x = (if ... then A.new else B.new)
x.f

Structural Subtyping

• Types so far have all been nominal
■ Refer directly to class names

■ Mostly because core standard library is magic

- Looks inside of Fixnum, String, etc “objects” for their contents

• But Ruby really uses structural or duck typing
■ Basic Ruby op: method dispatch e0.m(e1, ..., en)

- Look up m in e0, or in classes/modules e0 inherits from

- If m has n arguments, invoke m; otherwise raise error

■ Most Ruby code therefore only needs objects with particular
methods, rather than objects of a particular class

17

Object Types

• print accepts 0 or more objects with a to_s method

• Object types are especially useful for native Ruby code:
- def f(x) y = x.foo; z = x.bar; end

■ What is the most precise type for f ’s x argument?

- C1 or C2 or ... where Ci has foo and bar methods

- Bad: closed-world assumption; inflexible; probably does not match
programmer’s intention

- Fully precise object type: [foo:() →..., bar:()→...]

18

module Kernel
 print : (*[to_s : () → String]) → NilClass
end

Diamondback Ruby

• Automatically infer the types of existing Ruby programs
■ Start with base_types.rb, then infer types for the rest of the code

• Implements static type inference

■ Analyze the source code and come up with types that capture all
possible executions

■ Benefit: the types are sure to capture all behavior, even behavior
not explicitly tested

■ Drawback: the technique is approximate, meaning that the system
may fail to find types for correct programs

19

Dynamic Features

• We found that DRuby works well at the application level
■ Some experimental results coming up shortly

• But starts to break down if we analyze big libraries
■ Libraries include some interesting dynamic features

■ Typical Ruby program = small app + large libraries

20

Real-World Eval Example

21

class Format
 ATTRS = [“bold”, “underscore”,...]
 ATTRS.each do |attr|
 code = “def #{attr}() ... end”
 eval code
 end
end

Real-World Eval Example

22

class Format
 ATTRS = [“bold”, “underscore”,...]
 ATTRS.each do |attr|
 code = “def #{attr}() ... end”
 eval code
 end
end

class Format
 def bold() ... end
 def underline() end
end

Real-World Eval Example

• eval occurs at top level

• code can be arbitrarily complex

■ Thus we cannot generate a single static type for eval

• But, in this case, will always add the same methods

■ Morally, this particular code is static, rather than dynamic

23

class Format
 ATTRS = [“bold”, “underscore”,...]
 ATTRS.each do |attr|
 code = “def #{attr}() ... end”
 eval code
 end
end

Another Fun Example

24

config = File.read(__FILE__)
 .split(/__END__/).last
 .gsub(#\{(.*)\}/) { eval $1}

Another Fun Example

25

config = File.read(__FILE__)
 .split(/__END__/).last
 .gsub(#\{(.*)\}/) { eval $1}

Huh?

Another Fun Example

26

config = File.read(__FILE__)
 .split(/__END__/).last
 .gsub(#\{(.*)\}/) { eval $1}

class RubyForge
 RUBYFORGE_D = File::join HOME, ".rubyforge"
 COOKIE_F = File::join RUBYFORGE_D, "cookie.dat"
 config = ...
 ...
end
__END__
 cookie_jar : #{ COOKIE_F }
 is_private : false
 group_ids :
 codeforpeople.com : 1024
 ...

Read the current file

Another Fun Example

27

config = File.read(__FILE__)
 .split(/__END__/).last
 .gsub(#\{(.*)\}/) { eval $1}

class RubyForge
 RUBYFORGE_D = File::join HOME, ".rubyforge"
 COOKIE_F = File::join RUBYFORGE_D, "cookie.dat"
 config = ...
 ...
end
__END__
 cookie_jar : #{ COOKIE_F }
 is_private : false
 group_ids :
 codeforpeople.com : 1024
 ...

Get everything after here

Another Fun Example

28

config = File.read(__FILE__)
 .split(/__END__/).last
 .gsub(#\{(.*)\}/) { eval $1}

class RubyForge
 RUBYFORGE_D = File::join HOME, ".rubyforge"
 COOKIE_F = File::join RUBYFORGE_D, "cookie.dat"
 config = ...
 ...
end
__END__
 cookie_jar : #{ COOKIE_F }
 is_private : false
 group_ids :
 codeforpeople.com : 1024
 ...

Substitute this

Another Fun Example

29

config = File.read(__FILE__)
 .split(/__END__/).last
 .gsub(#\{(.*)\}/) { eval $1}

class RubyForge
 RUBYFORGE_D = File::join HOME, ".rubyforge"
 COOKIE_F = File::join RUBYFORGE_D, "cookie.dat"
 config = ...
 ...
end
__END__
 cookie_jar : #{ COOKIE_F }
 is_private : false
 group_ids :
 codeforpeople.com : 1024
 ...

With this

Another Fun Example

30

config = File.read(__FILE__)
 .split(/__END__/).last
 .gsub(#\{(.*)\}/) { eval $1}

class RubyForge
 RUBYFORGE_D = File::join HOME, ".rubyforge"
 COOKIE_F = File::join RUBYFORGE_D, "cookie.dat"
 config = ...
 ...
end
__END__
 cookie_jar : “/home/jfoster/.rubyforge/cookie.dat”
 is_private : false
 group_ids :
 codeforpeople.com : 1024
 ...

Eval it

Another Fun Example

31

config = File.read(__FILE__)
 .split(/__END__/).last
 .gsub(#\{(.*)\}/) { eval $1}

class RubyForge
 RUBYFORGE_D = File::join HOME, ".rubyforge"
 COOKIE_F = File::join RUBYFORGE_D, "cookie.dat"
 config = ...
 ...
end
__END__
 cookie_jar : “/home/jfoster/.rubyforge/cookie.dat”
 is_private : false
 group_ids :
 codeforpeople.com : 1024
 ...

Store in config

Profiling Dynamic Features

• To handle eval and similar features, we extend DRuby
static inference to incorporate profiling information
■ When eval(...) occurrences are reached, we replace them with

the code the evaluated to during test runs, and perform inference
on that code

• Found that in most situations, eval was not
unconstrained, but idiomatic. In short, the technique
worked well

32

Example Errors Found

• Typos in names
■ Archive::Tar::ClosedStream instead of Archive::Tar::MiniTar::ClosedStream

■ Policy instead of Policies

• Other standard type errors

■ rule_not_found not in scope

■ Program did include a test suite, but this path not taken

33

return rule_not_found if !@values.include?(value)

Syntactic Confusion

■ First passes [3,4] to the []= method of @hash

■ Second passes 3 to the []= method, passes 4 as last argument of
assert_kind_of

- Even worse, this error is suppressed at run time due to an undocumented
coercion in assert_kind_of

34

assert_nothing_raised { @hash[‘a’, ‘b’] = 3, 4 }
...
assert_kind_of(Fixnum, @hash[‘a’, ‘b’] = 3, 4)

Syntactic Confusion (cont’d)

■ Programmer intended to concatenate two strings

■ But here the + is parsed as a unary operator whose result is
discarded

35

flash[:notice] = “You do not have ... “
+ “...”

@count, @next, @last = 1

■ Intention was to assign 1 to all three fields

■ But this actually assigns 1 to @count, and nil to @next and @last

Performance (DRuby)

■ Times include analysis of all standard library code used by app

36

Benchmark Total LoC Time (s)
ai4r-1.0 21,589 343
bacon-1.0.0 19,804 335
hashslice-1.0.4 20,694 307
hyde-0.0.4 21,012 345
isi-1.1.4 22,298 373
itcf-1.0.0 23,857 311
memoize-1.2.3 4,171 9
pit-0.0.6 24,345 340
sendq-0.0.1 20,913 320
StreetAddress-1.0.1 24,554 309
sudokusolver-1.4 21,027 388
text-highlight-1.0.2 2,039 2
use-1.2.1 20,796 323

Figure 8. Type inference results

that much of the offending code is almost statically typable
with DRuby’s type system. To measure how “close” the
code is to being statically typable, we manually applied a
number of refactorings and added type annotations so that
the programs pass DRuby’s type system, modulo several
actual type errors we found.

The result gives us insight into what kind of Ruby code
programmers “want” to write but is not easily amenable to
standard static typing. (DRuby’s type system combines a
wide variety of features, but most of the features are well-
known.) In the remainder of this section, we discuss the true
type errors we found (Section 6.1), what refactorings were
needed for static typing (Section 6.2), and what we learned
about the way people write Ruby programs (Section 6.3).
Overall, we found that most programs could be made stat-
ically typable, though in a few cases code seems truly dy-
namically typed.

6.1 Performance and Type Errors
Figure 8 shows the time it took PRuby to analyze our modi-
fied benchmarks. For each benchmark, we list the total lines
of code analyzed (the benchmark, its test suite, and any li-
braries it uses), along with the analysis time. Times were
the average of three runs on an AMD Athlon 4600 proces-
sor with 4GB of memory. These results show that PRuby’s
analysis takes only a few minutes, and we expect the time
could be improved further with more engineering effort.

Figure 9 lists, for each benchmark or library module
used by our benchmarks, its size, the number of refactorings
and annotations we applied (discussed in detail in the next
section), and the number of type errors we discovered. The
last row, Other, gives the cumulative size of the benchmarks
and library modules with no changes and no type errors.
PRuby identified eight type errors, each of which could

cause a program crash. The two errors in the pathname mod-
ule were due to code that was intended for the development
branch of Ruby, but was included in the current stable ver-
sion. In particular, pathname contains the code

def world readable ?() FileTest . world readable ?(@path) end

Module LoC Refactorings Annots Errors
archive-minitar 538 3 · 1
date 1,938 58 8 ·
digest 82 1 · ·
fileutils 950 1 7 ·
hoe 502 3 2 ·
net 2,217 22 3 ·
openssl 637 3 3 1
optparse 964 15 21 ·
ostruct 80 1 · ·
pathname 511 21 1 2
pit-0.0.6 166 2 · ·
rake 1,995 17 7 ·
rational 299 3 25 ·
rbconfig 177 1 · ·
rubyforge 500 7 ·
rubygems 4,146 44 47 4
sendq-0.0.1 88 1 · ·
shipit 341 4 · ·
tempfile 134 1 3 ·
testunit 1,293 3 20 ·
term-ansicolor 78 1 ·
text-highlight-1.0.2 262 1 1 ·
timeout 59 1 1 ·
uri 1,867 15 20 ·
webrick 435 4 1 ·
Other 4,635 · · ·
Total 24,895 226 177 8

Figure 9. Changes needed for static typing

However, the FileTest.world readable? method is in the de-
velopment version of Ruby but not in the stable branch that
was used by our benchmarks. The second error in pathname

is a similar case with the world writable? method.
The type error in archive-minitar occurs in code that at-

tempts to raise an exception but refers to a constant incor-
rectly. Thus, instead of throwing the intended error, the pro-
gram instead raises a NameError exception.

The four type errors in rubygems were something of a
surprise—this code is very widely used, with more than 1.6
million downloads on rubyforge.org, and so we thought any
errors would have already been detected. Two type errors
were simple typos in which the code incorrectly used the
Policy class rather than the Policies constant. The third er-
ror occurred when code attempted to call the non-existent
File.dir? method. Interestingly, this call was exercised by
the rubygems test suite, but the test suite defines the miss-
ing method before the call. We are not quite sure why the
test suite does this, but we contacted the developers and con-
firmed this is indeed an error in rubygems. The last type er-
ror occurred in the =∼method, which compares the @name

field of two object instances. This field stores either a String

or a Regexp, and so the body of the method must perform
type tests to ensure the types are compatible. However, due
to a logic error, one of the four possible type pairings is han-
dled incorrectly, which could result in a run time type error.

Finally, the openssl module adds code to the Integer class
that calls OpenSSL :: BN :: new(self). In this call, self has
type Integer, but the constructor for the OpenSSL :: BN

Follow-on Work

• DRails — Type inference for Ruby on Rails
■ Rails is a popular web application framework

• User study — Is type inference useful?
■ The jury is still out

• Rubydust — Static type inference, at run time
■ Ruby library that does type inference, rather than a separate tool

• Rubyx — Symbolic execution for Ruby
■ Powerful technology that extends testing

■ Used to find security vulnerabilities in Rails programs

■ But can be used for many program reasoning tasks

37
http://www.cs.umd.edu/projects/PL/druby

